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Abstract

(2+1)-dimensional gravity with a negative cosmological constant is a topo-

logical theory with no local degrees of freedom. When confined to compact

universes which are topologically genus g Riemann surfaces times time, its

classical phase space is the cotangent bundle of the moduli space of Riemann

surfaces. We consider the quantization of moduli space itself, emerging as

the zero-momentum slice of this phase space. When a parity-violating Chern-

Simons term is added to the gravitational action, a nontrivial symplectic form

is induced on this slice which is a multiple of the Weil-Petersson Kähler form.

By demanding that this symplectic form integrate to 2π~ times an integer on

every nontrivial two-cycle in moduli space—which is a necessary condition for

the system to be quantizable—we find a new quantization condition on the

Chern-Simons coupling k′. Our result strongly suggests that k′ must be an

integer multiple of 24 in order to define a self-consistent theory of quantum

gravity.
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Abrégé

La gravitation en 2+1 dimensions avec une constante cosmologique négative

est une théorie topologique, sans degrés de liberté locaux. Lorsqu’elle est

limitée à des univers compacts qui sont topologiquement un produit direct des

surfaces de Riemann au genre g et du temps, son espace de phase classique

est le fibré cotangent de l’espace des modules des surfaces de Riemann. Nous

considérons la quantification de l’espace des modules lui-même, qui se produit

comme la tranche zéro dynamique de cet espace de phase. Quand on ajoute un

terme Chern-Simons, qui brise la parité, à l’action gravitationelle, une forme

symplectique non triviale est induite sur cette tranche qui est un multiple de la

forme Kähler de Weil-Petersson. En exigeant que cette forme symplectique doit

intégrer à 2π~ multiplié par un entier sur tous les cycles non triviaux de degré

2 dans l’espace des modules—condition nécessaire pour faire la quantification

du système—nous trouvons une nouvelle condition de quantification pour k′,

le couplage Chern-Simons. Notre résultat suggère fortement que k′ doit être

un multiple entier de 24, afin de définir une théorie cohérente de la gravitation

quantique.
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Chapter 1

Introduction

Despite both being nearly a hundred years old, the theories of quantum me-

chanics and general relativity have yet to be combined in a completely sat-

isfactory way. There are several reasons for this. The first is that when we

attempt to treat general relativity perturbatively as a quantum field theory,

we immediately run into intractable infinities. Fundamentally this is because

general relativity, whose coupling constant G1/2 has units of inverse energy, is

a nonrenormalizable theory: it requires a UV completion to properly under-

stand its behaviour at high energies and short distance scales. The search for

this UV completion has given rise to several theories, the most popular being

string theory, which purport to describe this short-distance physics in such a

way that quantum mechanics can properly be applied to the theory. While

these programs have yet to make contact with experimental reality, they have

led to rich mathematical theories and spawned many influential ideas, such as

compact extra dimensions, brane worlds, spacetime holography and noncom-

mutative geometry, which continue to shape the way we think about gravity

and the nature of spacetime.

There is, however, more to understanding quantum gravity than simply
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finding the UV completion of a particular nonrenormalizable field theory.

Rather, since general relativity is the study of a dynamical spacetime, quantum

gravity must describe how spacetime itself emerges from a quantum theory.

This is a much stranger puzzle than a quantum field theory, which takes the

background spacetime as a given. Furthermore, general relativity, being dif-

feomorphism invariant, seems to require a diffeomorphism-invariant quantum

theory, which does away with the usual locality of quantum field theory as well

as any notion of a canonical time-slice on which to normalize quantum proba-

bilities. We would like to have a theory that allows us to test out these oddities

of quantum gravity without being hampered by the nonrenormalizability of the

theory.

(2+1)-dimensional gravity provides us with such a theory. In universes

with this dimensionality, one less than our own universe (macroscopically, at

least), the local spacetime geometry is completely fixed by Einstein’s equations

of motion and there are no local degrees of freedom. This results in a trivial

theory on topologically trivial manifolds, but when spacetime is nontrivially

identified there are a finite number of parameters that define its topology, and

these become our only dynamical degrees of freedom. Quantizing this the-

ory therefore becomes a quantum mechanics problem rather than a quantum

field theory, and renormalizability becomes a non-issue. This leaves us free to

worry about other questions in quantum gravity, such as: What is a state in

a quantum gravity? What determines the initial state of a big bang universe?

What is the natural topology of spacetime, and can it change? And are there

inequivalent ways to quantize a single classical gravity theory?

The classical theory of 3d gravity dates back to Staruszkiewicz [1], who

first considered the problem of point particles in 3d gravity in 1963. The

quantum theory first came to real fruition with the advent of the Chern-Simons
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formulation of 3d gravity, first discovered by Achúcarro and Townsend in 1986

[2] and rediscovered by Witten [3] in 1988, which allows the space of classical

solutions to be quantized as a topological field theory. More recently, 3d gravity

has proven quite useful in the realm of the AdS/CFT correspondence, providing

easy checks of black hole entropy as a counting of holographic states [4] and

of holographic entanglement entropy as the area of minimal surfaces [5].

Here we will consider pure 3d gravity, without any matter content, as it

applies to compactified big-bang/big-crunch universes. We will work with an

extension of classical Einstein gravity which includes a parity-violating term.

This term introduces a nontrivial commutator on the ‘ground state’ space of

the theory: the subset of classical solutions whose dynamics are governed by a

single time-dependent scale factor. This ground state space is the moduli space

of Riemann surfaces, and is an orbifold due to the large-diffeomorphism invari-

ance of gravity. This means that our phase space is topologically nontrivial,

and the requirement that wave functions on this space must be single-valued

may lead to a quantization condition on the parameters of the theory. We

will attempt to find this condition, and determine whether it changes with

the topology of the spacetime being considered. In the cases where our phase

space is quantizable, will examine the resulting theory and attempt to find its

Hilbert space using the methods of geometric quantization.

1.1 Content of this work

This work proceeds as follows. In Chapter 2 we provide an overview of the

solutions of 3d gravity and present two different frameworks for describing

its dynamics: the ADM formalism and the Chern-Simons formulation. These

frameworks complement each other and together allow us to get an intuition for

3



the phase space of the theory. Ultimately though, we will be more interested

in the second one, as it is the one most easily extended to the parity-violating

theory that we wish to consider. We will see that the classical phase space

remains the same whether or not a parity-violating term is present in the ac-

tion, and can be described as the tangent bundle T ∗Mg of the moduli space of

Riemann surfaces. However, the parity-violating term does change the Poisson

brackets of the theory, and leads to an inequivalent quantum mechanics.

In Chapter 3 we lay out the problem we wish to consider: the quantization

of moduli space Mg as the ‘zero-momentum’ slice of our full phase space.

In the general case where the coefficient k′ of the parity-violating term is

nonzero, there is a nontrivial quantum mechanics on Mg with a commutator

proportional to 1/k′. The nontrivial topology of Mg, and in particular its

orbifold structure, leads us to expect that single-valuedness of wave functions

around nontrivial cycles will lead to a quantization condition on k′; our goal is

to find this condition. We provide a simple motivating example from quantum

particle theory which illustrates the drastic effects of a parity-violating term on

a quantum theory, and how such a theory still retains the important properties

of its ground-state Hilbert space when confined to the zero-momentum slice of

its phase space.

Chapter 4 is devoted to an exposition of the framework and relevant as-

pects of geometric quantization (GQ). GQ is a quantization scheme based on

symplectic geometry that allows one to systematically build a Hilbert space

out of a phase space and a commutator, represented as a symplectic mani-

fold M and a closed nondegenerate two-form ω called the symplectic form.

We show how wave functions in the theory are constructed as global sections

of a certain complex line bundle, the ‘prequantum line bundle’, which must

have a compatible connection with curvature equal to (1/~)ω. The question
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of single-valuedness of the wave function in this case boils down to the ques-

tion of whether or not such a line bundle exists. A necessary and sufficient

condition for this is that (1/2π~)ω must be in integer cohomology. In our case

(1/2π~)ω = (k′/4π2)ωWP where ωWP is the well-studied Weil-Petersson Käh-

ler form on moduli space, so the quantization condition on our theory becomes

the condition that this form be in integer cohomology. We briefly present the

notion of polarizations in GQ, and show that, if quantizable, the Hilbert space

of our reduced theory is the space of holomorphic sections of the prequantum

line bundle.

In Chapter 5 we delve into the geometry of the general moduli spaceMg,n of

a genus g Riemann surfaces with n marked points. We show how its universal

covering space Tg,n, called Teichmüller space, can be constructed in Fenchel-

Nielsen coordinates by considering the decomposition of the surface into ‘pairs

of pants.’ The mapping class group Γ, the group of large diffeomorphisms on

the surface, is generated by Dehn twists: operations which cut along a closed

geodesic and twist by 2π. Moduli space is then constructed as Mg,n = Tg,n/Γ.

We show how the Weil-Petersson form arises as the natural Kähler form in

these coordinates, and how it survives as a Kähler form under the quotient

of the mapping class group. We then derive the cohomology of ωWP on Mg,n

following the analysis by Wolpert [6], and conclude that (1/4π2)ωWP is in 1
24

integer cohomology.

Finally in Chapter 6 we present our main result: a new quantization con-

dition on the coupling constant k′. We show that k′ must be a multiple of 24

when we take our phase space to be the Delign-Mumford compactification Mg,

and that this remains a sufficient condition for the quantizability of the uncom-

pactified space although we cannot rule out the possibility that some rational

fraction of this quantity is also allowed. We show that the quantization condi-

5



tion for our reduced model, though found by confining to the zero-momentum

slice of the phase space, provides a necessary condition for the quantization

of the full theory. We discuss the semiclassical dimensionality of the quantum

mechanical Hilbert space, using results from GQ and a conjecture by Zograf,

and find evidence of a divergence that suggests that a ‘typical’ state in the

theory is an infinite-genus handle body: a sort of spacetime foam. We perform

a preliminary examination of how this divergence is affected by the addition

of a length scale into the problem, and attempt to relate this to the finite

number of microstates behind a BTZ black hole event horizion. We conclude

by suggesting some directions for future research.
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Chapter 2

3d gravity

To start off, we present an exposition of gravity in 2+1 dimensions. We will

be concerned only with pure gravity, with an action dependent only on the

geometry of the space with no external fields. We will look at two theories of

gravity: classical Einstein gravity, as well as an extension which includes an

‘exotic’ parity-violating term. Our goal in this section will be to describe the

phase space of all solutions to these theories whose spatial slice is a compact

Riemann surface, and to analyze how such a phase space might be quantized.

Many of the results in section 2.1 are standard results in general relativity,

and derivations can be found in textbooks such as Carroll [7]. Standard results

which are specific to 3d general relativity, as well as those on the first-order

formalism in section 2.3 can be found in such works as the review and book

by Carlip [8][9].

2.1 3d Einstein gravity

Let us consider a general d-dimensional spacetime manifold M , with d − 1

spatial dimensions and a single time dimension, endowed with a Lorentzian

metric gµν . We will work in (−,+, . . . ,+) metric signature. In any theory
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of pure gravity, the metric is the only dynamical variable in the equations of

motion, so any action we can construct must be a scalar depending solely on

the metric. We require that this scalar be diffeomorphism-invariant, so that

the theory depends only on the geometry, not the chosen coordinate system.

In Einstein gravity (with a cosmological constant) our starting point is the

Einstein-Hilbert action:

I =
1

16πG

∫

M

d3x
√−g(R− 2Λ) (2.1)

where R is the Ricci scalar of the metric and Λ is the cosmological constant.

Taking the variation of the action with respect to the metric yields Einstein’s

equations

Rµν =
2Λ

d− 2
gµν (2.2)

where Rµν is the Ricci scalar. A manifold whose metric satisfies these equations

of motion is called an Einstein manifold. In 3+1 dimensions these equations

of motion do not entirely fix the local geometry of the space, and at each

point there are two local degrees of freedom: the two polarizations of gravita-

tional waves (see, e.g. Carroll [7]). 3+1 dimensional gravity must therefore be

quantized as a quantum field theory, with an infinite-dimensional phase space

of classical solutions. Unfortunately the Einstein-Hilbert action turns out to

be nonrenormalizable, and so attempting to quantize the full theory leads to

intractable infinities that prevent us from being able to say anything useful.

In 2+1 dimensions the situation is much changed. Here the local geometry

is uniquely fixed by Einstein’s equations, due to the fact that the full curvature

tensor of the metric can be written entirely in terms of the Ricci tensor:

Rµνρσ = gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ −
1

2
(gµρgνσ − gµσgνρ)R (2.3)
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Thus, every space-time manifold that is a solution to the (2+1)-dimensional

Einstein equations of motion is a simple constant-curvature space. So even

though the theory is technically still nonrenormalizable (by power-counting of

the coupling constant), there are no propagating modes and there is no need

to add extra counterterms to the action when quantizing. We only have to

work with renormalized coupling constants G and Λ for the entire theory to

be well-behaved.

If we confine ourselves to simply connected manifolds, our only possible

classical solutions are the (2+1)-dimensional maximally symmetric spaces:

Minkowski space (denoted R1,2) for Λ = 0, de Sitter (dS3) space for Λ > 0 and

Anti-de Sitter (AdS3) space for Λ < 0. These are not the only Einstein man-

ifolds in 2+1 dimensions, however. We can construct others by quotienting

the maximally symmetric spacetimes by discrete subgroups of their symmetry

groups: the Poincaré group ISO(2, 1) for Minkowski space, SO(3, 1) for dS3

and SO(2, 2) for AdS3. The discrete subgroup then becomes the fundamental

group of a topologically nontrivial constant-curvature space. In general these

spaces are difficult to classify and may include closed time-like curves.

In this work we will be interested in the case where the manifold is topo-

logically a compact surface times time; i.e. M ≈ R×Σ. We will be interested

in finding the phase space of all classical solutions of this type, so that later

we can quantize this phase space. In this case the fundamental group of the

manifold π1(M) is isomorphic to that of its spatial component, π1(Σ). Let

us take Σ to be a genus g handle body. Then its fundamental group π1 is

generated by 2g closed curves in pairs (Ai, Bi), along with the one nontrivial

group multiplication:

A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 . . . AgBgA
−1
g B−1

g = 1 (2.4)
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To obtain a compact constant-curvature space, we choose a map from π1(Σ)

onto a discrete subgroup of G, the symmetry group of the relevant universal

covering space. Quotienting the covering space by this discrete group then

produces a space with topology R×Σ, and specifies a constant-curvature met-

ric on it. Two such maps will result in the same metric if they differ by overall

conjugation by an element of the symmetry group G. So we find that the

phase space of all possible distinct manifolds of this type is equivalent1 to

Hom(π1(Σ), G)/G: the set of all maps π1(Σ) → G modulo an overall conju-

gation by an arbitrary element of G. For Σ a genus g handle body we are

embedding 2g generators, with two degrees of freedom removed by the group

relation and by modding out conjugations, into a six-dimensional symmetry

group. This defines a space of classical solutions with dimension 12g − 12.

We must note before moving on that in fact the above construction pro-

duces an over-counting of classical solutions of the theory. This is because

quotienting by G only ensures that our solutions are distinct up to diffeomor-

phisms that are continuously connected to the identity—that is, those that can

be generated by elements of G. For topologically nontrivial manifolds there

will also be large diffeomorphisms, not deformable to the identity, that can

connect different elements of the above solution space. Since general relativity

is meant to be invariant under all diffeomorphisms, we must take these into

account by quotienting our solution space by a discrete group Γ: the group

of large diffeomorphisms (modulo infinitesimally generated ones) of M . Γ is

known as the mapping class group of M . We will study such groups in more

detail in Chapter 5.

1There is actually a slight subtlety here. The space Hom(π1(Σ), G)/G is in fact several
disjoint spaces labelled by the Euler character of the map, and only those maps with maximal
Euler character produce well-behaved topological spaces. The actual space of solutions is
this disjoint subset of the full space of maps [8]. Furthermore, this space must then be
quotiented by the mapping class group.
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Taking all this into consideration, we have found a definition of our phase

space of classical solutions for a R×Σ universe of genus g. It is a rather formal

definition, however, and presents some problems in terms of quantization. For

example, it is not clear from this definition of the phase space which degrees of

freedom ought to be thought of as ‘position’ variables and which to associate

with their canonical momenta; we therefore have no Poisson bracket with which

to define canonical commutation relations in the quantum theory. For this

there are two formalisms that we can turn to. The first is the ADM formalism

[10] as applied to compact 3d universes by Moncrief [11], which we will find

useful for gaining an intuitive picture of the phase spaces we are considering.

The second is the Chern-Simons formulation of 3d gravity, originally discovered

by Achúcarro and Townsend [2] and later rediscovered and expanded byWitten

[3], which will be useful because it extends very easily to a parity-violating

theory.

2.2 The ADM formalism

The ADM formalism, named for its originators Arnowitt, Deser and Misner

[10], proceeds by choosing a time-coordinate along which to slice the spacetime,

and then decomposing the metric as

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt). (2.5)

Here N and N i are known as the lapse and shift functions, respectively, and

gij is the induced metric on a spatial hyper-surface, which in our case will just

be the Riemann surface Σ.

Let us note here for the first time a fact about two-dimensional geometry

which will be of much use to us: any metric on a Riemann surface is conformally
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related to a metric of constant curvature. This is known as the uniformization

theorem. In particular, for Σ a compact surface of genus g > 1 with a given

metric gij there exists [11] a function λ(xi) on Σ such that

gij = e2λḡij(mα) (2.6)

where ḡij(mα) is a metric on Σ of constant curvature k = −1. mα are the

moduli of ḡij: a set of 6g − 6 parameters that completely determine a k = −1

constant-curvature metric on a genus g Riemann surface. The space of these

moduli—which is therefore also the space of such metrics—is called moduli

space, denoted Mg.

For the metric decomposition (2.5), the Einstein-Hilbert action takes the

form

I =
1

16πG

∫

dt

∫

Σ

d2x(πij ġij −N iHi −NH). (2.7)

Here we find the conjugate momentum to gij: πij =
√
g(Kij − gijK), where

Kij is the extrinsic curvature of the spatial surface and K = Ki
i. Meanwhile,

the other two terms in the action are defined by [11]

Hi = −2∇jπ
j
i (2.8)

H =
1√
g
gijgkl(π

ikπjl − πijπkl)−√
g((2)R− 2Λ) (2.9)

where (2)R is the Ricci scalar on Σ. The terms in the action containing Hi

and H are nondynamical, so varying with respect to the lapse N and shift

Ni simply yields the constraint that both (2.8) and (2.9) must vanish for any

classical solution. Moncrief [11] has shown that the first of these, known as the

momentum constraint, is trivially solved if we choose the York time-slicing [12]

which takes Σ to be a surface of constant curvature K and chooses the time-
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coordinate T = −K = gijπ
ij/

√
g. The second can be solved by decomposing

gij according to (2.6) and choosing λ to satisfy [11]

2∆̄λ− 1

2
(T 2 − 4Λ)e2λ +

[

ḡ−1ḡij ḡklp
ikpjl

]

− k = 0 (2.10)

where as previously stated, for our purposes k = −1.

The tensor pij = e2λ(πij − 1
2
T
√
ggij) is the transverse-traceless part of the

momentum conjugate to ḡij, the trace of the momentum having been deter-

mined by the York time-slicing. Much like ḡij it is completely determined by

a set of parameters pα defined by

pα =

∫

Σ

d2x pij
∂

∂mα

ḡij. (2.11)

These pα are precisely the conjugate momenta to mα [11], so they satisfy the

classical Poisson brackets

{pα,mβ} = δαβ , {mα,mβ} = {pα, pβ} = 0. (2.12)

A choice of values (mα, p
α), α = 1, . . . , 6g − 6 uniquely determines λ, ḡij and

πij, and so specifies a unique classical solution to the equations of motion. We

see therefore that these are the coordinates of the classical phase space, which

in agreement with our result in the previous section is of dimension 12g − 12

and which we now know to be isomorphic to T ∗Mg, the cotangent bundle of

moduli space.

Ideally from this point one would simply perform the standard quantization

procedure of turning these canonical variables into operators and converting

the Poisson bracket into the commutator, [mα, p
β] = i~δβα. There are some

problems with this, however. Chief among them is the fact that the Hamilto-
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nian constraint has left us with the following highly nontrivial, time-dependent

Hamiltonian on phase space [11]:

H =

∫

Σ

d2x
√
ge2λ(m,p,T ) (2.13)

In the case where Σ is a torus, this Hamiltonian can be written out explicitly,

and the resulting eigenfunctions on phase space have been discussed by Puzio

in [13]. For higher genus, however, the Hamiltonian becomes more complicated

and this approach is likely to be intractable [14]. However, there is an alternate

formulation of the problem which, in addition to allowing us to see the problem

in yet another new light, also avoids the problem of a complicated Hamiltonian

by parametrizing the phase space in terms of topological invariants that do

not evolve with time. We therefore turn to an exposition of the Chern-Simons

formulation of 3d gravity.

2.3 3d gravity as a Chern-Simons theory

The basis of the Chern-Simons formulation of 3d gravity is the spin-connection

formalism of general relativity, which uses the triad eµ
a and spin connection

ωµ
ab as its fundamental degrees of freedom instead of working directly with

components of the metric. The triad eµ
a can be thought of as a change-of-

basis transformation on the tangent space at any point on M , which takes us

from the basis defined by the coordinates to an arbitrary basis of our choice. It

is more formally defined [3] as an isomorphism from the tangent bundle of the

manifold to an abstract vector bundle V . V has an SO(2, 1) group structure

and is endowed with a Minkowski metric ηab, which we can use to raise and

lower roman indices on the triad and other V -valued objects, as well as a

volume 3-form εabc. The metric on the manifold is determined by the equation

14



gµν = ηabeµ
aeν

b; this often leads to the characterization of the triad as the

‘square root’ of the metric. We can also think of the triad as a V -valued one-

form ea = eµ
adxµ. The spin connection ωµ

ab is so named because it appears

as the connection on covariant derivatives of spinor fields on curved manifolds.

We can think of it as the connection that defines parallel transport on the

vector bundle V . The spin connection can be thought of as an antisymmetric

V ⊗ V -valued one-form ωab = ωµ
abdxµ. By using the volume tensor we can

also represent it also as a V -valued one-form ωa = 1
2
εabcωµbcdx

µ.

In the spin-connection formalism, the action is given by

I = − 1

8πG

∫

M

{

ea ∧
(

dωa +
1

2
εabcω

b ∧ ωc

)

+
Λ

6
εabce

a ∧ eb ∧ ec
}

. (2.14)

We regard ω and e as completely independent variables and vary I with each

of them in turn. This yields the equations of motion

dea + εabcω
b ∧ ec = 0, (2.15)

dωa +
1

2
εabcω

b ∧ ωc = −Λ

2
εabce

b ∧ ec. (2.16)

The first equation determines ω as a torsion-free connection and completely

fixes it as a function of the triad,

ωµ
a = εabceνc(∂µeνb − ∂νeµb)−

1

2
εbcd(eνbe

ρ
c∂ρeνd)eµ

a (2.17)

which is in fact how the spin connection was historically defined. With this

definition, the Riemann tensor can be written as a V -valued 2-form which is in

fact precisely the left side of (2.16), and this equation turns out to be precisely

equivalent to the vacuum Einstein equations with cosmological constant (2.2).

So the spin connection formalism and classical Einstein gravity are in fact
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completely equivalent theories. For more detail on this, see [8],[3].

We now proceed by treating both ω and e as gauge fields. Witten [3] has

shown that for any value of Λ, we can construct gauge fields out of ω and e

such that the action (2.14) becomes precisely the Chern-Simons action

ICS =
k

4π

∫

M

tr(A ∧ dA+
2

3
A ∧ A ∧ A) (2.18)

for a gauge field A with gauge group equal to the local diffeomorphism group

of the theory (the symmetry group of the universal covering space of classi-

cal solutions that we discussed in Section 2.1). This makes sense intuitively,

since like 3d gravity Chern-Simons theory is a topological theory; it has no

local degrees of freedom. It also represents a vast improvement from the ADM

formalism, because the Hamiltonian of a Chern-Simons theory vanishes iden-

tically [15]. So there will no longer be any need to diagonalize a complicated

time-dependent Hamiltonian to understand the quantum theory. Rather, the

theory is fully characterized by the Poisson bracket imposed on the phase space

by the action (2.18). This simplicity, which springs from the fact that the ob-

servables in Chern-Simons theory are all topological invariants, comes at the

cost of making it very difficult, and perhaps impossible [14] to reconstruct

the evolution of the spatial metric that was so explicitly seen in the ADM

formalism. Luckily, this will not be necessary for our purposes.

We calculate the Poisson bracket for a Chern-Simons theory in the usual

way, by choosing a time-direction and calculating the conjugate momenta of

field components by differentiating the Lagrangian by their time-derivatives.

The result is [16]

{Ai
a(x), Aj

b(x)} =
4π

k
tr(TaTb)εijδ

(2)(x− y). (2.19)
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Here Ta are the generators of the gauge group representation and tr(TaTb) is

the bilinear form that defines the trace in (2.18). To quantize the theory, we

simply perform the usual operation of converting the components of A into

operators and converting the Poisson bracket into the commutator

[Âa
i (x), Â

b
j(x)] = −4πi~

k
tr(TaTb)εijδ

(2)(x− y). (2.20)

The construction of the gauge field is somewhat different depending on the

value of the cosmological constant, so we will focus only on the case where Λ

is negative. In this case the gauge group will be SO(2, 2), which is the same as

SO(2, 1) × SO(2, 1). So we can decompose the gauge field action (2.18) into

the actions of two SO(2, 1) gauge fields, left and right, which we will call AL

and AR:

ICS = k(IL − IR)

=
k

4π

∫

M

tr(AL∧dAL+
2

3
AL∧AL∧AL)−

k

4π

∫

M

tr(AR∧dAR+
2

3
AR∧AR∧AR)

(2.21)

The reason for the relative minus sign will soon become apparent. Let us now

define the generators Ta of a three-dimensional representation of SO(2, 1),

satisfying the commutation relations

[Ta, Tb] = εabcT
c. (2.22)

where again we are raising and lowering roman indices with ηab.The trace on

these generators is uniquely determined by the bilinear form

tr(TaTb) = ηab. (2.23)
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We now define our SO(2, 1) gauge fields as

AL = (ωa − ea/l)Ta, (2.24)

AR = (ωa + ea/l)Ta. (2.25)

where l is a positive length scale defined by Λ = −1/l2. With these definitions

and using (2.22) and (2.23) to evaluate the trace, the expressions for the left

and right Chern-Simons actions become

IR/L =
1

4π

∫

M

{

ωa ∧ dωa +
1

3
εabcω

a ∧ ωb ∧ ωc − 1

l2
(

ea ∧ dea + εabcω
a ∧ eb ∧ ec

)

}

± 1

4π

∫

M

1

l

{

2ea ∧ dωa + εabce
a ∧ ωb ∧ ωc − 1

3l2
εabce

a ∧ eb ∧ ec
}

. (2.26)

In this form, it is easy to see that with the identification k = l/16G, our Chern-

Simons action (2.21) is precisely the first-order gravitational action (2.14).

Now just as we did in the case of the ADM formalism, we would like to

apply the classical constraints to our field equations and and find the resulting

classical phase space of solutions. For any Chern-Simons theory with action

(2.18), the classical constraint equations take the simple form [16]

FΣ = (dA+ A∧A)Σ = 0 (2.27)

where the Σ subscript denotes that this is the curvature of the gauge connection

confined to the spatial slice Σ. In our case the decomposition of the gauge

group simply requires us to enforce FLΣ = FRΣ = 0. We see now another great

advantage of working in the Chern-Simons formalism: the constraints (2.8) and

(2.9) that appeared so complicated in the ADM formalism are here reduced to

the very simple requirement that the gauge field must have vanishing curvature.
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Any gauge connection A with this property will specify a classical solution

of the theory. In addition, as is usual in gauge theory two connections are

considered to specify the same solution if they differ by a gauge transforma-

tion. Thus the phase space M of our Chern-Simons theory is the set of all

such SO(2, 2) gauge connections on M , quotiented by the action of the gauge

group [3]. The Poisson bracket (2.19) descends trivially from the infinite-

dimensional space of all possible connections onto a Poisson bracket on this

phase space [17]. Flat gauge connections are completely determined [15] by

their holonomies around nontrivial cycles of M : for M ≈ R × Σ, they are

in fact in one-to-one correspondence with the embeddings of π1(Σ) into the

gauge group. Quotienting by gauge transformations thus brings us back to

M = Hom(π1(Σ), SO(2, 2))/SO(2, 2). This agrees exactly with the result we

obtained in section 2.1, except for the conspicuous absence of the additional

quotient by Γ, the mapping class group of M . This shows us that 3d gravity

is in fact only locally equivalent to a Chern-Simons theory, with additional

global considerations that must be put in by hand. We will shortly see how to

reintroduce the mapping class group.

Ignoring this complication for a moment, we turn to examine our Chern-

Simons phase space M which in this case factors into ML × MR, where

ML = MR = Hom(π1(Σ), SO(2, 1))/SO(2, 1) is the space of flat SO(2, 1)

connections on Σ. SO(2, 1) = PSL(2, R) is the symmetry group of the 2-

dimensional hyperbolic plane H2, the universal covering space of Riemann

surfaces with constant negative curvature. So as we saw in section 2.1, spec-

ifying a given embedding of π1(Σ) into SO(2, 1) is equivalent to specifying a

constant negative curvature metric on Σ, and the space embeddings is isomor-

phic to the space of such metrics. As before, these metrics are distinct only up

to infinitesimally generated diffeomorphisms. This space of constant negative-
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curvature metrics on a genus g Riemann surface has been well studied and is

known as Teichmüller space, denoted Tg. We therefore obtain the result that,

locally, our phase space is M = Tg × Tg.

In section 2.2 we obtained the expression T ∗Mg for our phase space, where

Mg is the moduli space of constant negative curvature metrics on Σ modulo all

diffeomorphisms. It is easy to see that this implies thatMg = Tg/Γ. This gives

us a clue as to how to act with the mapping class group on M: we simply

have to find the slice through M that describes the same solutions as the

trivial section of T ∗Mg—i.e. those where all the momenta pα have been set to

zero. These solutions are the static moduli solutions: time-reversal-symmetric

metrics which can be written as

ds2 = 4l2
(

−dt2 + 1

2
cos2(t)ḡijdx

idxj
)

(2.28)

where ḡij is an arbitrary metric on Σ with curvature k = −1. They form a

6g − 6 dimensional solution space that is obviously isomorphic to Mg. In the

Chern-Simons formulation, we restrict to the equivalent subset of solutions by

imposing the constraint

ALµ
a = (−1)µ+aARµ

a. (2.29)

Any solution of the form (2.28), with spin connection given by (2.17), will sat-

isfy this constraint. So the space of static moduli solutions is here represented

by the degrees of freedom of a single SO(2, 1) gauge field, and therefore by yet

another Teichmüller space Tg: a diagonal slice through M constructed out of

components of both ML and MR. To connect this result with the space we

got from the ADM formalism, we see that our quotient by the mapping class

group must act internally on this slice, only identifying its points with other
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points on the same slice. This slice then becomes the base Mg = Tg/Γ of the

cotangent bundle T ∗Mg, and the remaining degrees of freedom make up the

fibre.

2.4 Parity-violating Chern-Simons gravity

We would now like to look at a small extension to Einstein gravity that arises

naturally from the Chern-Simons formulation. It is obtained by allowing dif-

ferent coefficients for the components IL and IR in the gravitational action

[18], i.e. a generalized Lagrangian of the form

I = kLIL − kRIR =
kL + kR

2
(IL − IR) + (kL − kR)

IL + IR
2

. (2.30)

The first term in the final expression is the usual Einstein-Hilbert action with

k = kL+kR
2

. The second is the so-called ‘exotic’ term, and is parity-violating.

Since this term is also the sum of two SO(2, 1) Chern-Simons actions, it must

also be possible to write it as a second SO(2, 2) Chern-Simons action of the

form (2.18). Witten [18] has shown that this is indeed the case. Written out

explicitly in terms of e and ω, the exotic term is given by

∆I =
k′

4π

∫

M

{

ωa ∧ dωa +
1

3
εabcω

a ∧ ωb ∧ ωc − 1

l2
(

ea ∧ dea + εabcω
a ∧ eb ∧ ec

)

}

(2.31)

where we have defined k′ = kL − kR. Somewhat incredibly, varying this new

action with respect to e and ω produces the exact same system of equations

(2.15) and (2.16) as before, so the extended theory has all the same solutions

and the exact same classical phase space as the old one [3].

Despite their identical phase space of solutions, the addition of the exotic

term to the gravitational action will have profound implications for the quan-
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tization of the theory. An easy illustration of this, and one which we will be

spending a large portion of this work discussing, is to see what happens when

we again restrict ourselves to the static moduli solutions by imposing the con-

dition (2.29), and look at the resulting theory on the reduced phase space Mg.

It is easy to verify that the SO(2, 1) Chern-Simons action has a discrete sym-

metry under Aµ
a → (−1)µ+aAµ

a. So the condition (2.29) implies that, on this

reduced slice of phase space, IL = IR. In the case where there is no exotic term

in the action these terms will exactly cancel, leaving us with an action that is

identically zero! The theory is trivial on this reduced slice of phase space; no

commutators can be defined, and there is no quantum mechanics to be done.

This is in line with the ADM picture: in our attempt to quantize ADM phase

space the only nonzero commutators are between moduli and their conjugate

momenta, so reducing to the subspace where all momenta vanish leaves us

with no nonzero commutation relations, and a trivial quantum mechanics.

The situation is much different if k′ = kL − kR is nonzero, because in

the exotic term IL and IR are added rather than subtracted. The result is

that restricting to the subspace of static moduli solutions no longer kills the

gravitational action, but transforms it into the action of a single SO(2, 1)

Chern-Simons field—the same field, in fact, that we used to construct our

diagonal Teichmüller space in the first place. So our reduced phase space is

endowed with the usual Poisson bracket (2.19). The resulting theory, however,

is not simply a quantized Chern-Simons theory, because our phase space is not

the usual phase space Tg; it has been modded out by the action of the mapping

class group to yield Mg.
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Chapter 3

Statement of the Problem

3.1 A minisuperspace model

We now come to the problem that we wish to consider: the quantization of

Λ < 0 parity-violating 3d gravity on a compact R × Σ universe, restricted

to the reduced phase space of static moduli solutions. These solutions may

be considered to be in some sense the ‘ground states’ of the theory: they

are the solutions of greatest symmetry, being the only solutions to be time-

reversal invariant, and in the ADM formalism they are the solutions with all

momenta set to zero. Our restriction to this subset of the phase space may

be thought of as a much less drastic version of the minisuperspace model

considered by Hartle and Hawking in their study of the wave function of the

universe [19]. There the authors reduce the infinite-dimensional phase space of

(3+1)-dimensional gravity with a free scalar field to its subspace of maximally

symmetric solutions: a two-parameter family of homogeneous, isotropic closed

universes characterized solely by their time-dependent scale-factor a(t) and

isotropic field-value φ(t). They restrict the Einstein-Hilbert action to vary only

in these two parameters and quantize the resulting theory. Our construction,
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by comparison is much less extreme: We are only reducing the phase space

by half its degrees of freedom, from the 12g − 12 free parameters of the full

solution space to the 6g−6 dimensions of Mg. Nevertheless, in both cases the

motivation is the same: we are reducing a difficult quantum mechanics problem

to a simpler one that still contains enough interesting physics to provide some

insight into solutions of the full theory. In Hartle and Hawking’s case, the result

is a ground-state wave function in terms of their two variables [19] which they

relate to the ground state of the full quantum theory. In our case, our reduced

model provides a test of whether the full theory can be quantized at all.

The potential impediment to the quantization of our parity-violating grav-

ity theory can be traced back to the large-diffeomorphism invariance of grav-

ity. It is this invariance that forces us to quotient our Chern-Simons solution

space by the mapping class group Γ. This transforms the phase space from a

well-behaved manifold into a topologically nontrivial space with orbifold sin-

gularities. In general such phase spaces are not guaranteed to be quantizable

because the wave functions obtained in solving the quantum theory are mul-

tivalued; they do not return to themselves around nontrivial cycles. However,

when a coupling constant is present in the commutator, as it is in our case, we

can always tune the coupling to specific quantized values that will make the

wave functions single-valued. This provides a quantization condition for the

coupling constant. Thus, the first interesting question we could ask is what the

quantization condition is for our exotic-term coupling constant k′, and how it

changes with the topology of the space we consider. Since the mapping class

group acts internally on the subspace of static moduli solutions, this subspace

will contain all possible orbifold points and our reduced phase space scheme

should be sufficient to determine this quantization condition. We will prove

that the quantization condition we obtain is at least a necessary constraint on
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the full theory, if not a sufficient one.

The quantization of k′ is not in itself a problem. In fact, the coupling

constants of Chern-Simons gauge theories are usually quantized as an artifact

of how the action of the theory is rigorously defined. See, e.g. Killingback

[15] for an explanation of this. This phenomenon only applies to gauge groups

with nontrivial third homotopy group π3, and since π3(SO(2, 1)) is trivial [15]

our coupling constant is not quantized by this mechanism. However, Witten’s

work on the 3d AdS/CFT correspondence [18] suggests that such couplings

may have to be quantized anyway when working in the context of Chern-

Simons gravity, both to make contact with the quantized central charges of

boundary CFTs and to enable analytic continuation to Euclidian gravity, for

which the local symmetry group transforms into SO(3). In any case, it would

certainly seem that a quantization condition is not particularly problematic

for Chern-Simons theories.

The new factor introduced here is that a theory of gravity should not be

confined to a single space-time topology, but should be sensibly defined for

arbitrary topologies. In the context of our study of compact universes, this

means that we should be able to apply the same theory—with the same cou-

pling constants—to universes with compact spatial slices of arbitrarily high

genus. So we have not a single quantization condition but an infinite number

of them, one for each value of g. The question then becomes, are all of these

quantization conditions mutually compatible? One could easily imagine a sce-

nario where, as g becomes large and Mg acquires higher and higher-degree

orbifold points, the smallest permissible nonzero value for k′ might grow with-

out limit. In this case the theory becomes nonsensical and the only possibility

is that k′ = 0, reducing us to vanilla (2+1)-dimensional Einstein gravity where

the commutator on Mg is trivial. If, on the other hand, the quantization con-
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ditions turn out to be compatible, and the full theory quantizable, we would

like to understand to the best of our ability the resulting quantum Hilbert

space and its dependence on the topology of the space.

To answer these questions, we first have to understand geometric quanti-

zation: the quantization scheme that will allow us make rigorous statements

about the quantizability and Hilbert space of a quantum theory for which all

we have is a phase space and a commutator. We will then need to gain an

understanding the geometry on Mg and the nontrivial cycles that will deter-

mine whether or not we can construct single-valued wave functions to live on

it. Expositions on these topics will therefore be the topics of our next two

chapters.

3.2 Particle in a uniform magnetic field

Before proceeding, we present a small exposition on a completely different

problem: the quantization of a quantum particle moving in a uniform magnetic

field. This will provide a fully solvable ‘baby example’ of the effects of adding

a parity-violating term to the action of quantum theory, and its effects on the

quantization of the subspace of ground states of the theory. We will also find

this problem illuminating as an illustrative example during our discussion of

geometric quantization. Results in the following are taken from [20], [21].

3.2.1 The free particle

Consider a free charged particle confined to a two-dimensional plane with co-

ordinates (x, y). In the absence of fields, the classical action of this particle

is

S =
1

2

∫

dt(ẋ2 + ẏ2). (3.1)
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It is easy to see that px = Πx = ẋ and py = Πy = ẏ are the canonical momenta

conjugate to x and y respectively, where throughout this discussion we will use

Π to denote the kinetic momentum ẋ, reserving the symbol p for the canonical

momentum. The Hamiltonian is, of course

H =
1

2
Π2 =

1

2
p2. (3.2)

The phase space of classical solutions is the tangent bundle T ∗C with coor-

dinates (x, y, px, py). We quantize the phase space by turning its coordinates

into operators and imposing the canonical commutation relations

[x̂, p̂x] = [ŷ, p̂y] = i~ (3.3)

These commutators are analogous to the ones we found for parity-preserving

Einstein gravity in section 2.2. Note that if we reduce our phase space to its

base by imposing the condition p = 0, all of the commutators become trivial.

As any first-year student of quantum mechanics knows, the wave-functions

that diagonalize the Hamiltonian are kinetic momentum eigenfunctions |Πx,Πy〉,

completely characterized by their momenta. We mention this only to note that

there is a unique ground state: the Hamiltonian eigenstate corresponding to

〈Π̂x〉 = 〈Π̂y〉 = 0 for which the position wave function is a constant. This

uniqueness will not be the case when we add a magnetic field.

3.2.2 Addition of a uniform magnetic field

Now consider the addition of a uniform magnetic field of strength B, pointing

in the z direction. It can be thought of as arising from the gauge potential

A = (Ax, Ay) =
B

2
(−y, x). (3.4)
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The new action is given by

S =

∫

dt

(

1

2
ẋ2 +

1

2
ẏ2 +A · ẋ

)

. (3.5)

The extra term in the action is a parity-violating term. Taking the variation

with respect to the coordinates, the conjugate momenta of x and y are no longer

equal to the kinetic momenta ẋ and ẏ. Instead they are given by

(px, py) = (Πx −
B

2
y,Πy +

B

2
x) (3.6)

while the Hamiltonian remains

H =
1

2
Π2 =

1

2
(p−A)2 =

1

2

(

p2 +
B2

4
x2 +

B

2
(pxy − pyx)

)

. (3.7)

To quantize this system, we again turn our observables into operators and

impose the canonical commutation relations (3.3). Note that the form of the

commutators has not changed, but the definition of p̂ has. Now the Hamilto-

nian cannot be diagonalized by eigenfunctions of both Π̂x and Π̂y, since these

operators do not commute. Rather, they satisfy

[Π̂x, Π̂y] = i~B. (3.8)

Because of this we can construct creation and annihilation operators which

satisfy the commutation relation [a, a†] = 1:

â =

√

1

2~B
(Π̂x + iΠ̂y) (3.9)

â† =

√

1

2~B
(Π̂x − iΠ̂y) (3.10)
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The Hamiltonian then becomes

Ĥ = ~B

(

â†â+
1

2

)

. (3.11)

We can thus construct all the eigenfunctions of the Hamiltonian by first

finding all wave functions annihilated by â and then acting on them with â†.

To do this we define complex coordinates z = x+ iy and z̄ = x− iy. In these

coordinates the annihilation condition takes the form

〈z, z̄| â |0〉 = −i
√

~

2B

(

2∂̄ +
B

2~
z

)

ψ(z, z̄) = 0 (3.12)

and the solution wave functions are

ψ(z, z̄) = f(z)e−Bz̄z/4~ (3.13)

where f(z) is any holomorphic function of z, so the space of ground state wave

functions is isomorphic to the space of holomorphic functions on the complex

plane. Thus we have the surprising result that, unlike the free particle which

had a single state representing a stationary particle, here we have an infinite

tower of lowest-energy states, each of which is as good a candidate as any other

for the ‘best approximation’ of a particle at rest.

We can generate our infinite tower of ground states by considering the

restriction of the theory onto the slice of the phase space with Πx=Πy = 0, i.e.

the complex plane C, and imposing a priori the commutation relation

[x̂, ŷ] = − i~
B
. (3.14)

How do we define these operators in terms of their action on wave functions?

One way would be to arbitrarily decide to treat one as the canonical momentum
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of the other, defining ŷ ≡ i~
B
∂x or x̂ ≡ − i~

B
∂y. More equitably, we can treat our

two coordinates on the same level and define instead

x̂ =
1

2
x− i~

B
∂y, ŷ =

1

2
y +

i~

B
∂x. (3.15)

It is easy to see that these definitions satisfy the commutator (3.14).

From these operators we can construct another set of creation-annihilation

operators b̂ and b̂†, which satisfy [b̂, b̂†] = 1:

b̂ =

√

B

2~
(x̂− iŷ) =

√

~

2B

(

2∂ +
B

2~
z̄

)

(3.16)

b̂† =

√

B

2~
(x̂+ iŷ) =

√

~

2B

(

−2∂̄ +
B

2~
z

)

(3.17)

The only Hamiltonian ground-state that is annihilated by b̂ is the one with

constant f(z): ψ0 = N0e
−Bz̄z/4~ where N0 is a normalization constant. By

acting with powers of b†, we build up a tower of states

ψn = (b̂†)nψ0 = Nnz
ne−Bz̄z/4~. (3.18)

Since any holomorphic function can be written as a Taylor series, these ψn’s

form a basis for the space of Hamitonian ground states.

Let us recap what we have learned. We have seen that when our com-

mutators paired only base space variables with tangent space variables (the

case of the free particle), there was a single ground state corresponding to a

constant wave function. However, when we added the parity-violating term,

we suddenly gained an infinite degeneracy of ground states corresponding to

the holomorphic functions on C. Furthermore, we were able reduce down to

the zero-momentum slice of the phase space and still generate the entire tower
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of ground states by imposing a nontrivial commutator.

Returning to gravity, our proposal is that the same should be true of our

parity-violating gravity theory: that the Hilbert space we find by quantizing

the base space should be a subspace of degenerate ground states of the full

theory. We unfortunately lack the ability so far to explicitly solve the full

theory in order to find out if this is correct. However, our problem’s similarity

to the case of a particle in a magnetic field at least gives us confidence that

this proposal makes sense.
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Chapter 4

Geometric quantization

We now turn to the problem of quantizingMg. To make this problem rigorous,

we need a systematic quantization scheme that allows us to construct a Hilbert

space of wave functions on an arbitrary phase space endowed with a Poisson

bracket. This idea finds its realization in the theory of geometric quantization

(GQ): the study of the quantization of symplectic manifolds. Here we will

provide an overview of the elements of geometric quantization needed for us

to analyze the problem at hand. A more complete exposition of the theory of

geometric quantization can be found in such reviews as Blau [22] and Hassan

and Mainiero [23], as well as references therein. Most of the results in the

following chapter are standard results in the field of GQ, and can be found in

these reviews unless otherwise noted. The full application of GQ to Chern-

Simons gauge theory has been laid out by Axelrod, Della Pietra and Witten

in [17].

Geometric quantization begins with an arbitrary manifold endowed with a

symplectic structure: a closed non-degenerate two-form that is the GQ equiva-

lent of a Poisson bracket. It begins by choosing a prequantization, defined by a

certain complex line bundle over the manifold with a specified connection. The
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existence of such a line bundle is not guaranteed for an arbitrary symplectic

manifold; the question of its existence is the GQ equivalent of whether we can

define single-valued wave functions on the manifold. If such a line bundle ex-

ists the manifold is called quantizable, and we can define a prequantum Hilbert

space as the space of global sections of the line bundle—each section being the

GQ equivalent of a wave function. This Hilbert space unfortunately turns out

to be much too large to be the proper quantum Hilbert space, and we must

reduce its degrees of freedom by picking a polarization: a set of constraints on

the allowable sections that reduces the Hilbert space to the right number of

degrees of freedom.

4.1 Phase space as a symplectic manifold

The starting point of geometric quantization is the symplectic manifold. A

symplectic manifold is a manifold M endowed with a two-form ω called a

symplectic form. The defining properties of ω are that it must be closed—that

is, dω = 0—and non-degenerate, i.e. it must have non-vanishing determinant

at every point onM . Being closed implies that locally ω can always be written

as an exterior derivative

ω = dθ (4.1)

of some one-form θ, called the symplectic potential. θ is obviously not unique,

since the transformation θ → θ+dλ will yield the same symplectic form for any

function λ on M . Meanwhile, the non-degeneracy of ω implies that M must

be even-dimensional, as the determinant of an odd-dimensional antisymmetric

matrix always vanishes. Taking the dimension of the manifold to be 2n, one

can take the nth power of ω to define a volume form, leading to the notion of
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the symplectic volume of the manifold,

Volω(M) :=
1

n!

∫

M

ωn. (4.2)

We can think of ω as acting something like a metric, in that it provides an

isomorphism between the tangent and cotangent spaces of M . It can be used

to associate a one-form, denoted i(X)ω, to every tangent vector X, expressible

in local coordinates as

i(X)ωj = ω(X, .)j = ωijX
i. (4.3)

This then allows us to define a vector field Xf for every smooth function f on

M by the relation

i(Xf )ω = −df. (4.4)

Xf is called the Hamiltonian vector field of f . Regarding Xf as a differential

operator X i
f∂i, we see that we have a natural scheme by which a function on a

phase space is transformed into a differential operator—exactly what is needed

for quantum mechanics. The coordinates of Xf take the explicit form

Xf
i = ωji∂jf. (4.5)

This construction allows us to define the Poisson bracket between two functions

f and g according to

{f, g} = ω(Xf , Xg) = ωij∂if∂jg (4.6)

The Lie bracket between two Hamiltonian vector fields naturally satisfies the
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condition

[Xf , Xg] = X{f,g} (4.7)

so, amazingly, our ‘operators’ turn to have just the right commutation rela-

tions, as defined by the Lie bracket, to be the quantum operators corresponding

to functions f and g. It will turn out, however, that these are not quite the

right operators; they must be supplemented by additional terms to satisfy the

properties we would normally like quantum operators to have.

The symplectic manifolds that arise most often in physics are cotangent

bundles T ∗Q of some n-dimensional manifold Q. These have a natural set of

coordinates: the n dynamical variables qk that are the coordinates of Q, and

their conjugate momenta pk. A cotangent bundle has a natural symplectic

structure given by

ω = dqk ∧ dpk. (4.8)

On an arbitrary symplectic manifold it is always possible to locally find co-

ordinates in which ω takes this form, but only on cotangent bundles are they

guaranteed to be globally defined. If we take (4.8) as our symplectic structure,

then the poisson bracket between any functions f and g is given by

{f, g} =
∂f

∂pk

∂g

∂qk
− ∂f

∂qk
∂g

∂pk
(4.9)

which is the standard Poisson bracket in Hamiltonian mechanics. Applied to

the q’s and p’s, we get

{pk, ql} = δlk; {qk, ql} = {pk, pl} = 0, (4.10)

exactly as expected. On M = T ∗C, this gives us the Poisson bracket of a free

quantum particle. On M = T ∗Mg, it gives us the ADM Poisson bracket of 3d
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Einstein gravity.

Different symplectic structures on the same manifold can lead to different

quantum theories. For example, to get the quantum theory of a particle in a

magnetic field described in section 3.2.2, we again start with M = T ∗C with

coordinates (xi,Πi), but change the symplectic form to [22]

ωA = ω + dA = dxi ∧ dΠi +Bdx ∧ dy. (4.11)

We can easily see that taking pi = Πi + Ai as defined in equation (3.6), this

reduces to the standard form (4.8) of the symplectic structure and gives us

the canonical Poisson bracket between xi and pi. Furthermore, we see that

reducing to the Π = 0 slice of phase space, we are left with a residual symplectic

structure ω = Bdx ∧ dy.

4.2 Prequantization

Having expressed a classical system as a symplectic manifold (M,ω), we wish

to find a consistent way of transforming functions f on M into quantum me-

chanical operators f̂ which will act on complex wave functions on M . Our

scheme should be such that the operators we define have the following prop-

erties:

(a) If a is a constant function, its associated operator is a times the identity.

(b) Linearity: If f → f̂ and g → ĝ, then af + g → af̂ + ĝ

(c) If {f1, f2} = f3, then [f̂1, f̂2] = −i~f̂3.

Building off of our observations in the previous section, we might first try

the assignment f̂ = −i~Xf . This satisfies (b) and (c), but cannot be the
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right assignment since it maps any constant function to the null operator. To

remedy this, we might try to add the function f itself to our operator; however,

the resulting assignment now fails condition (c), despite meeting the others.

Instead, the assignment that satisfies all three conditions is

f̂ = −i~Xf − θ(Xf ) + f. (4.12)

where θ is some local symplectic potential.

Let us see how this works in the case of the Π = 0 slice of T ∗C with sym-

plectic form ω = Bdx ∧ dy. We first calculate the vector fields corresponding

to the functions x and y according to (4.5):

Xx = ωji(∂jx)∂i = ωxy∂y =
1

B
∂y (4.13)

Xy = ωji(∂jy)∂i = ωyx∂x = − 1

B
∂x (4.14)

Now noting that ω is the total derivative of the symplectic potential θ = A =

B
2
(xdy − ydx), we can easily see that θ(Xx) = x/2 and θ(Xy) = y/2. The

definition (4.12) then gives us

x̂ = −i~
(

1

B
∂y

)

− x

2
+ x =

x

2
− i~

B
∂y (4.15)

ŷ = −i~
(

− 1

B
∂x

)

− y

2
+ y =

y

2
+
i~

B
∂x (4.16)

in exact agreement with the x̂ and ŷ operators we defined in section 3.2.2.

We now run into the problem that the above operator assignment is not

unique, since as we have seen, θ is defined only up to an arbitrary closed

one-form. Any redefinition of θ by the addition of such a form will have

no effect on ω, but it clearly will change the operators defined by (4.12).

37



For instance, in the above example we could have just as easily chosen the

symplectic potential θ = Bxdy, which would have given us the more ‘one-

sided’ operator assignments x̂ = x, ŷ = i~
B
∂x.

We would like to find a way to define our wave functions such that the entire

theory is invariant under such transformations. This can be accomplished if,

for the transformation θ → θ+dλ, the wave function also transforms according

to

ψ → eiλ/~ψ. (4.17)

With this definition, the extra term from the derivative of the wave function

will cancel the extra term from the redefinition of θ and the overall action of f̂

is invariant. This is a familiar picture: what we have discovered is simply the

statement that our theory has a U(1) gauge symmetry. It is therefore most

natural to think of ψ not as a complex function, but as a section of a complex

line bundle over M , which we will label L. A given choice of λ defines a local

trivialization of L, allowing ψ to be written locally as a function. In general

though, this trivialization will only be valid for a given domain on M and ψ

will undergo transformations of the form (4.17) between trivializations that

are valid on different domains. Defining ψ as a section of a pre-existing line

bundle ensures that these transformations will all be compatible, so that we

can consistently define ψ as a single-valued wave function.

In this picture, changes in the local trivialization also correspond to changes

in the symplectic potential θ and the operators f̂ . Since we have found a

manifestly covariant definition for the wave functions, we would like to find

an equally covariant definition of these operators. We can accomplish this by

regarding θ as a gauge connection that defines to covariant derivative on L:

D = d− (i/~)θ (4.18)
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With this definition the first two terms of (4.12) are simply a directional deriva-

tive along the vector field Xf , and we can write our operator covariantly as

f̂ = −i~DXf
+ f. (4.19)

The curvature two-form of D, defined by

Ω(X, Y ) = i([DX , DY ]−D[X,Y ]) (4.20)

is readily computed to be

Ω = i(−i/~)dθ = (1/~)ω. (4.21)

This is in fact the defining property of D, since any covariant derivative on L

can be written locally in the form (4.18) if and only if it has curvature (1/~)ω.

We can now rigorously define what we mean by the prequantization of a

symplectic manifold (M,ω). A prequantization is defined as a choice (L,D)

of complex line bundle L over M and a compatible connection D which is

required to have curvature (1/~)ω. A wave function on M is defined as a

global section of L, and we define the prequantum Hilbert space as the vector

space of such sections which are square-integrable with respect to the volume

form ε = 1
n!
ωn. The operators on this Hilbert space are connection-preserving

automorphisms of (L,D), defined by arbitrary functions on M according to

the assignment (4.19).

A fact that we will find useful about line bundles is that the tensor product

of two complex line bundles is itself a complex line bundle. For two line

bundles L and L′ with connections D = d+ ia and D′ = d+ ia′ in some local

trivialization, the connection on the tensor product bundle L′′ = L ⊗ L′ is

39



given by D′′ = d+ i(a+a′): the symplectic potentials simply add. This implies

that if (L,D) is a prequantization for (M,ω) and (L′, D′) is a prequantization

for (M,ω′), (L′′, D′′), as defined above, will be a valid prequantization for

(M,ω + ω′). In particular, this allows us to generate prequantizations for

(M, kω) for any integer k by taking the the kth power Lk of a valid prequantum

line bundle for (M,ω).

The existence of such a pair (L,D) is not guaranteed for an arbitrary

symplectic manifold. Consider a local trivialization ω = dθ, valid over some

domain U ⊂M . It can be shown (see, e.g. Hassan and Mainiero [23]) that the

change in the phase of a wave function around some closed curve γ is given by

the action of the holonomy operator ξ, defined by

ξ = exp

(

i

~

∫

γ

θ

)

(4.22)

Since ω = dθ, we can replace
∫

γ
θ by

∫

Σ
ω in the above definition, where Σ is

any surface such that ∂Σ = γ. There are, however, many choices of possible

surface Σ, all of which must lead to the same definition for ξ. So we have the

consistency condition that for two choices of surface Σ and Σ′, the difference
∫

Σ
ω−

∫

Σ′
ω must be an integer multiple of 2π~. Alternately, we can define the

surface Σ′′ as the orientation-reversal of Σ′, so that ∂Σ′′ = −γ. We can then

form a closed surface S = Σ ∪ Σ′′, and our consistency requirement takes the

form
∫

S

ω = (2π~)n, n ∈ Z. (4.23)

So we see that to properly define the holonomy operator, which is equivalent

to the ability to define a single-valued wave function, the two-form (1/2π~)ω

must be in integer cohomology—that is, it must integrate to an integer on any

two-cycle in M . This turns out to be both a necessary and sufficient condition
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for there to exist a prequantization (L,D) for our symplectic manifold. A

manifold where this condition holds is said to be quantizable, and it is only on

such manifolds that geometric quantization can be properly carried out. When

(M,ω) is a tangent bundle with the natural symplectic form (4.8), ω can be

written globally as a total derivative dθ with θ = pkdq
k. Since ω is exact, its

integral around any closed two-cycle is identically zero and the above condition

is trivially satisfied; these manifolds are therefore always quantizable.

4.3 Polarization

So far our exposition has been fairly straightforward and completely general,

applying equally to any quantizable symplectic manifold. This will now be

spoiled by the inconvenient fact that the Hilbert space we have defined is not

the right one to do quantum mechanics with. For one thing, since we have

put no condition on how localized the wave functions are allowed to be, our

prequantum Hilbert space is sure to contain states that violate the uncertainty

principle. For another, our Hilbert space is simply too large. In the case of a

free particle, for example, the allowed wave functions that make up the pre-

quantum Hilbert space are arbitrary square-integrable functions of both the n

coordinates qk and their n conjugate momenta pk. However, we know that nor-

mally in particle quantum mechanics a quantum state is completely specified

by its distribution in only n of these parameters: either by its spatial wave

function or its momentum distribution, the two being related by a Fourier

transformation. The defining property of these distributions is that they rep-

resent the projection of the wave vector |ψ〉 onto the eigenvectors of a maximal

set of commuting observables: ψ(q) = 〈q| ψ〉 and ψ(p) = 〈p| ψ〉 where |q〉 and

|p〉 are simultaneous eigenstates of all the q̂k and p̂k operators, respectively.
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We want a construction in the language of geometric quantization that

allows us to reduce our Hilbert space to those wave functions that are only

functions of a maximal set of commuting observables. The way that GQ ac-

complishes this is, at first glance, somewhat backward: instead of specifying

a set of variables on which our wave functions can depend, we specify a set

on which they are forbidden to depend. Since locally we can always write ω

as dqk ∧ dpk, we can infer from the free particle case that a maximal set of

commuting observables will always be n-dimensional, and therefore so will the

set of forbidden variables. The forbidden variables are specified by choosing a

polarization for our symplectic manifold. Roughly speaking, a polarization is a

set of n constraints on the allowed variation of the wave function. We will start

by explaining the most intuitive variety of polarization: the real polarization.

4.3.1 Real polarization

To define a real polarization, we choose an n-dimensional sub-bundle of the

tangent bundle TM of our symplectic manifold, which we will call P . We then

impose the condition that the wave function must have vanishing covariant

derivative along any vector field X which is a section of P :

DXψ = 0 ∀ X ∈ P (4.24)

where by X ∈ P is notational abuse signifying that X is a section of P . This

determines at every point a set of n directions along which the wave function

must be constant.

The curvature of D imposes certain restrictions on our choice of P . This
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can be seen by noting that if (4.24) is satisfied, it is certainly true that

[DX , DY ]ψ = 0 ∀ X, Y ∈ P. (4.25)

Combining this with the definition of the curvature form (4.20) and the fact

that D has curvature (1/~)ω, we arrive at the condition

D[X,Y ]ψ − (i/~)ω(X, Y )ψ = 0 ∀ X, Y ∈ P. (4.26)

The easiest way to satisfy this condition is if both terms on the left vanish

separately. For the first term, we can accomplish this by demanding that

the Lie bracket [X, Y ] of two sections of P is itself a section of P . For the

second, we simply demand that ω(X, Y ) = 0 for all X, Y ∈ P . The first of

these conditions is the statement that P is integrable, i.e. that M can be

foliated by a set of n-dimensional submanifolds N whose tangent bundles are

the restriction of P onto N . The second condition implies that ω vanishes on

these submanifolds. A submanifold on which ω vanishes is called Lagrangian,

and so P is an n-dimensional integrable Lagrangian subbundle of TM . We

can take this to be the definition of a real polarization on M .

For any cotangent bundle M = T ∗Q with its natural symplectic form

dqk ∧ dpk, there exists a real polarization called the vertical polarization. Here

we take P to be the subbundle of TM whose fibre at any point p ∈ M is the

just the tangent space of the fibre, which is spanned by the vectors ∂/∂pk.

The Lagrangian submanifolds over which ψ must be constant are then just the

cotangent spaces T ∗
q Q, q ∈ Q. So this is a very roundabout way of saying that

our wave functions ψ must be functions of the qk’s only, and our Hilbert space

reduces to the space of complex-valued functions on Q, exactly as we expect

from quantum mechanics.
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As intuitive as real polarizations are, they do not exist for all symplec-

tic manifolds (such as the sphere, where real everywhere-nonvanishing vector

fields are forbidden by the hairy ball theorem) and in any case are not gen-

eral enough for our purposes. We can get a more general polarization P by

complexifying the tangent bundle TM → TM c and defining P to be an n-

(complex) dimensional Lagrangian subbundle of TM c. The quantum Hilbert

space is again made up of sections of L that satisfy DXψ = 0 for all complex

vector fields X ∈ P .

4.3.2 Kähler polarization

The properties of completely general polarizations will not concern us, and

the reader is encouraged to consult Blau [22] for further details. The only

complex polarizations that we will be interested in are Kähler polarizations,

which are defined by the property P ∩ P̄ = {0}. These are so named because

their natural application is to the quantization of Kähler manifolds.

A Kähler manifold is a complex manifold with a symplectic form that is

compatible with its complex structure. To understand this definition we must

first understand the notion of an almost complex structure. Consider a vector

space V . A complex structure on V is a linear map J : V → V which squares to

−1. Being the ‘square root’ of −1 we can think of J as defining multiplication

by i on the vector space, so that general multiplication of a vector v ∈ V by a

complex number is given by

(a+ ib)v := av + bJv. (4.27)

A necessary and sufficient condition for defining J on V is that V must be

even-dimensional. Therefore if we take the case where V = TpM is the tangent
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space at some point p onM , it is always possible to define a complex structure

for TpM . An almost complex structure on M is then defined as a smoothly

varying rank (1,1) tensor field J on M with the property that at every point

p, Jp is a complex structure on TpM . If such a J exists, M is called an almost

complex manifold. Globally J can be thought of as an isomorphism of the

tangent bundle J : TM → TM that defines the multiplication of vector fields

on M by complex numbers. J is called compatible with the symplectic form

ω if it satisfies the property

ω(JX, JY ) = ω(X, Y ) (4.28)

for arbitrary vector fields X, Y ∈ TM .

The complexification V c of a vector space V (where here we mean com-

plexification in the usual way, independent of J) can always be decomposed

into the two eigenspaces V (1,0) and V (0,1) of its complex structure J , with

eigenvalues +i and −i respectively. They are spanned by vectors of the form

v ∓ iJv, v ∈ V . These vector subspaces are complex conjugates of each other,

satisfying V (1,0) ∩ V (0,1) = {0}. By decomposing TpM into such eigenspaces

of Jp at every point on M , we can decompose TM c into two n-dimensional

subbundles T (1,0)M and T (0,1)M satisfying the condition

T (1,0)M ∩ T (0,1)M = {0}. (4.29)

If these subbundles are integrable then at any point on M we can define

holomorphic coordinates on some patch U containing that point, and further-

more the maps between these coordinate on different patches will be holomor-

phic. A manifold M with these properties is called a complex manifold, and

J is then called a complex structure on M . A Kähler manifold is a complex
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manifold with a symplectic form ω that is compatible with J . In the context

of Kähler manifolds ω often referred to as the Kähler form.

If M is a Kähler manifold, then we can easily check that for X, Y ∈ TM ,

ω(X ∓ iJX, Y ∓ iJY )

= {ω(X, Y )− ω(JX, JY )} ∓ i{ω(X, JY ) + ω(JX, Y )}

= 0∓ i0 = 0. (4.30)

Since T (1,0)M and T (0,1)M are spanned by vector fields of this type, this implies

that they are Lagrangian subbundles, and so satisfy the criteria to be suitable

polarizations on M . The relation (4.29) then shows that both are Kähler

polarizations, according to our definition for a Kähler polarization as one for

which P ∩ P̄ = {0}. In fact, the existence of such a polarization on M is

sufficient to prove that that M is a Kähler manifold.

Let us now consider the quantization of a Kähler manifold M . M has

holomorphic coordinates zk with complex conjugates z̄k. In these coordinates,

the compatibility of ω with J implies that it takes the form

ω = iωijdz
i ∧ dz̄j, ω̄ij = ωji. (4.31)

Assuming the existence of a prequantization (L,D), the prequantum Hilbert

space is the space of arbitrary sections of L. Under any local trivialization,

these sections are arbitrary functions of both the zk’s and the z̄k’s. Taking

T (1,0)M as our polarization, which is spanned by the vectors ∂/∂z̄k, we see that

our reduced quantum Hilbert space is simply the set of holomorphic sections

of L.

It is now practically trivial to see how to get the ground state Hilbert

space that we found for the particle in a magnetic field in section 3.2.2. On
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the reduced phase space C, we simply define our complex structure in the

standard way by J∂x = ∂y, J∂y = −∂x. Then taking the usual definitions

z = x+iy, z̄ = x−iy, the tangent subbundles T (1,0)C and T (0,1)C are each one-

dimensional complex vector bundles spanned by ∂̄ = ∂x− i∂y and ∂ = ∂x+ i∂y,

respectively. Taking P = T (1,0)C, the polarization condition (4.24) simply

becomes the requirement ∂̄ψ = 0, and so the reduced quantum Hilbert space

is the space of holomorphic functions on C: exactly the Hilbert space we found

using standard quantum mechanics.

As a final note, let us consider the large k limiting behaviour of the quantum

Hilbert space on a Kähler manifold (M, kω) with prequantum line bundle

Lk. After Kähler polarization, the quantum Hilbert space is the space of

holomorphic sections of Lk, which we denote H0(M,Lk). If ω is a positive

Kähler form, i.e. ω(v, Jv) ≥ 0 ∀ v ∈ TM , then at large k all the higher

cohomology groups of Lk vanish by the Kodaira vanishing theorem (see, e.g.

[24]), and the Euler character of the line bundle is equal to dimH0(M,Lk). It

is then a consequence of the Riemann-Roch formula that the dimension of this

space takes the limiting value

dimH0(M,Lk) → kn

(2π~)nn!

∫

M

ωn =

(

k

2π~

)n

Volω(M) as k → ∞. (4.32)

This is as far into geometric quantization as we will find it necessary to go.

It should be noted, however, that we have stopped far short of the full picture.

There are numerous issues that we have not addressed. For example, generally

the only operators defined by (4.19) that make sense on our reduced Hilbert

space will be the ones that map polarized states to polarized states. For vertical

polarizations this will imply that we must modify our operator assignment for

any function that is not linear in the momenta. This is in fact exactly what we

would want, since in normal quantum mechanics these operators are not first-
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order in derivatives. Another problem is that generally there is no longer any

natural notion of square-integrability for our wave functions: for example, the

pk-invariance of vertically polarized wave functions implies that these will all

have diverging integral when integrated with respect to the standard measure

ε = 1
n!
ωn on M . If we try to remedy this by integrating over the space of

leaves of the polarization (i.e. Q for the vertical polarization), we run into

the problem that we have no natural way to determine the measure over this

space. This eventually requires us to abandon the picture of wave functions

as sections of L and instead view them as ‘half forms’ on L. We will not be

concerned with these details since, in the case of the Kähler polarization, they

do not affect the structure of the Hilbert space, which remains the space of

Holomorphic sections of L. However, the reader who wishes to understand

geometric quantization more fully is referred to references [22] and [23].

4.4 Geometric quantization of 3d gravity

We would now like to ask how all this applies to quantizing the phase space

T ∗Mg of our 3d gravity problem. In particular, we would like to see what the

condition is for phase space to be quantizable.

For 3d Einstein gravity without a parity-violating term, there is no quanti-

zability condition. As the ADM formalism has taught us, the Poisson bracket

in this case is just the standard one for a cotangent bundle, leading to the

symplectic form ω = dmα ∧ dpα. As usual in such a case, ω is globally the

derivative of the symplectic potential θ = mαdpα, so it integrates to zero on

any two-cycle and trivially satisfies the holonomy condition (4.23). We can

polarize our prequantum Hilbert space with a vertical polarization spanned by

the vector fields ∂/∂pα, and the quantum Hilbert space becomes the space of
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complex functions over Mg, which can also be defined as the space of complex

functions on Teichmüller space Tg which are invariant under the action of the

mapping class group Γ. In practice these functions may be hard to find, but in

theory at least we have solved the problem of finding a quantum Hilbert space

of states in this 3d gravity system.

With the addition of the parity-violating term, things are not so straight-

forward. Here we must use the first-order formulation of 3d gravity and quan-

tize the resulting Chern-Simons theory. As we have previously seen, the phase

space of SO(2, 1) Chern-Simons theory is Teichmüller space. In addition, Gold-

man [25] has shown that the symplectic form corresponding to the SO(2, 1)

Chern-Simons Poisson bracket (2.19) is in fact a multiple of a natural Kähler

form on Teichmüller space called the Weil-Petersson form (denoted ωWP ). The

exact relation between the two is [26][15]:

1

2π~
ω =

k

4π2
ωWP . (4.33)

As we will see in the next section, ωWP is an exact form on Teichmüller space,

so the phase space of SO(2, 1) is trivially quantizable. Since ωWP is a Kähler

form, we can apply the entire process of Kähler quantization and end up with

a quantum Hilbert space that is the space of holomorphic sections of a trivial

bundle over Tg. For the SO(2, 1) × SO(2, 1) Chern-Simons theory that is

locally equivalent to 3d gravity, we simply add our two Weil-Petersson forms

(with coefficients ∝ kL and −kR) to get a Kähler form on Tg ×Tg and proceed

exactly as before, ending up again with the space of holomorphic sections

of a trivial line bundle. As we have already seen, however, 3d gravity is not

globally a Chern-Simons theory, and the above phase space must be quotiented

by the mapping class group. Over the whole phase space we unfortunately

have very little idea what this does to our symplectic geometry—whether our

49



symplectic structure remains Kähler under the identifications of the quotient

and what sort of quantizability conditions might be necessary for the existence

of a prequantum line bundle.

We can make some headway by reducing the phase space to that of our

minisuperspace model of static moduli solutions. On this slice of phase space

the theory reduces to a single SO(2, 1) Chern-Simons theory with coupling

constant k′ = kL − kR, so for k′ 6= 0 the induced symplectic form is again

a Kähler form related to the Weil-Petersson form by (4.33). We also have a

better understanding of the action of the mapping class group on this slice,

since it acts internally, taking our Chern-Simons phase space Tg to moduli space

Mg. In addition, we will see that the Weil-Petersson form is invariant under

the action of the mapping class group on Teichmüller space, and so descends

to a Kähler form on Mg. Consequently, if moduli space is quantizable, we

can again apply our Kähler polarization procedure to determine the quantum

Hilbert space.

The impediment to accomplishing this is that we must first find a pre-

quantum line bundle, and this will only exist when (k′/4π2)ωWP is in integer

cohomology on Mg. This requirement is nontrivial, since ωWP is no longer

a globally exact form, and the quotient by Γ has left us with a topologically

complicated space that may contain noncontractible two-cycles. In addition

to this, we must alter what we mean by ‘integer cohomology’ to account for

the fact that Mg is an orbifold. Because of this, there are closed loops on

Mg—the ones that pass through orbifold points—which are not boundaries of

any smooth surface embedded in Mg. However, they will always be bound-

aries of embeddings of surfaces which are themselves orbifolds, and whose

orbifold points are mapped to orbifold points in Mg. Repeating the argu-

ments of section 4.2, we see that the new requirement for the wave function to
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be single-valued around these loops is that (k′/4π2)ωWP must also integrate

to an integer over closed two-cycles with orbifold points at orbifold points on

Mg. To understand these conditions, we need a better understanding of the

geometry of moduli space and the properties of the Weil-Petersson form. We

now turn to an exposition on these topics.
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Chapter 5

The geometry of moduli space

We have introduced the moduli space Mg as the space of hyperbolic (constant-

negative-curvature) metrics on a given genus g Riemann surface Σg. For the

purposes of this discussion we will actually want to consider the more gen-

eral case of a genus g Riemann surface with n marked points, or punctures,

which will become singularities in the hyperbolic metric on the surface. We

will denote this surface Σg,n. For this more general case the moduli space will

be denoted Mg,n. This space can actually be constructed in a few different

ways. One, as we have already seen, is as the space of embeddings of the fun-

damental group of Σg,n into PSL(2, R). Another is as the space of conformal

classes of metrics on Σg,n, since by an extension of the uniformization theorem

from section 2.2, every smooth metric on Σg,n is conformally equivalent to a

hyperbolic metric. Still another is as the space of genus-g algebraic curves

with n marked points. Regardless of all these constructions, we will find it

most useful to think of Mg,n in terms of our original definition, as the space

of hyperbolic metrics on Σg,n.

The first three sections of this chapter present elements of the vast and

well-studied theory of moduli spaces which will be relevant to our analysis.
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Many of the results in these sections are taken from lecture notes by Harer

[27] and the later review by Do [28], which the reader may wish to consult

for a more in-depth examination of moduli spaces and their Weil-Petersson

volumes.

5.1 Teichmüller space

Just as we have already alluded to for the n = 0 case, Mg,n will be constructed

as a quotient of a generalized Teichmüller space, denoted Tg,n, by the action of

the mapping class group Γg,n of our surface. We will start, therefore, by giving

an explicit construction of this Teichmüller space. To do so, we need to answer

the question: Exactly what information to we need in order to completely

specify a hyperbolic metric with n singularities on a genus-g Riemann surface?

Our strategy will be to first answer this question for a very simple surface,

and then use this surface as the building block with which to construct more

complicated surfaces. The building block we use is a sphere with three disks

removed: a surface often referred to as a pair of pants. Consider a pair of pants

with boundary curves (‘cuffs’) of lengths l1, l2 and l3. Our founding observation

is the fact that if we demand that all three boundary curves be geodesics, then

specifying the lengths (l1, l2, l3) completely determines a hyperbolic metric on

the pair of pants. To see this, consider a right-angled hexagonal domain on

the hyperbolic disk, whose boundaries are all geodesic (Fig. 5.1). Specify the

lengths of every second boundary geodesic to be 1
2
l1,

1
2
l2 and 1

2
l3. The lengths

of the geodesics in between are completely determined by the requirement

that they intersect at right angles, and this completely determines the shape

of the hexagonal domain. We now take two congruent copies of this hexagonal

domain and glue them together along the ‘in between’ geodesics. The result
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Figure 5.1: A hyperbolic hexagon is doubled and glued to construct a pair of
pants.

is a pair of pants with metric completely determined by the metric on the

hyperbolic disc, and cuff lengths (l1, l2, l3). The in between geodesics become

a set of three geodesics on the pair of pants which each intersect two geodesic

cuffs at right angles. These are called the seams of the pair of pants.

The next observation is that every surface Σg,n can be cut along 3g− 3+n

closed curves into a disjoint union of 2g − 2 + n pairs of pants. Here we

consider the n punctures to be boundary geodesics of zero length, so when

performing this decomposition each puncture becomes a cuff on a pair of pants.

Due to a theorem that states that every closed curve on a hyperbolic surface

is homotopic to a unique closed geodesic, it is always possible to perform

this cutting into pairs of pants along geodesic curves. Therefore after cutting

we are left with a set of pairs of pants with geodesic boundary components.

Such a decomposition of our surface is called a pants decomposition. This

decomposition is far from unique, which we can easily see just by examining

the case of a genus-2 handle body (Fig. 5.2).

Since the hyperbolic metric on each pair of pants is completely determined

by the lengths of its boundary geodesics, specifying the lengths of the 3g−3+n

cut geodesics will fix the metric on every pair-of-pants building block of Σg,n.

However, this is not yet quite the same as determining the hyperbolic metric
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Figure 5.2: Two pants decompositions of a genus-2 Riemann surface

over the whole surface, because we have yet to specify how pairs of pants are

glued together along their shared geodesics. The ambiguity lies in the fact

that, for any gluing of two corresponding cuffs, we could just as easily cut

them apart again, rotate one cuff with respect to the other, and glue them

back together. Since we are gluing along geodesics, this new gluing will still

result in a smooth hyperbolic surface, but with a different hyperbolic metric

that reflects the twist. To parametrize the twists, we choose a disjoint set of

closed curves C on Σg,n, all of whose elements transversely intersect the pants

decomposition, and which reduces to three disjoint arcs on each pair of pants.

As our ‘zero twist’ gluing, we choose the gluing for which each element of C

is homotopic to a closed geodesic which is a union of seams on the pairs of

pants. For any other gluing, the twist parameter τ for a given cut geodesic γ is

the (signed) geodesic distance along γ between the endpoints of the two seams

that formed a single geodesic on the zero-twist gluing (Fig. 5.3). We allow τ

can take any value on R, although it is clear that for a geodesic of length l, the

Figure 5.3: Two seams form a single geodesic on an untwisted gluing (left) but
are separated by a distance τ on a twisted gluing (right).
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twist parameters τ and τ+l result in exactly the same gluing, and therefore the

same hyperbolic surface. The operation of cutting, twisting by l and re-gluing

is called a Dehn twist, and is an example of a large diffeomorphism on Σg,n.

Our eventual quotient by the mapping class group will identify points related

by Dehn twists, but in Teichmüller space they are treated as distinct since the

map between them is not an infinitesimally generated diffeomorphism of the

surface.

The set of coordinates (lk, τk), k = 1, . . . , 3g− 3+ n are called the Fenchel-

Nielsen coordinates, and are global coordinates on Teichmüller space. Each

choice of a set of values for these coordinates uniquely labels a hyperbolic met-

ric on Σg,n that is distinct up to infinitesimally generated diffeomorphisms.

Note that these coordinates are not unique; there is a set of them for each dis-

tinct pants decomposition of Σg,n, and in general the transformation between

two sets of Fenchel-Nielsen coordinates does not have a closed form. Each lk

takes values along the positive real line and each τk takes values along the

entire real line, so Teichmüller space is a (6g − 6 + 2n)-dimensional manifold

isomorphic to (R+ × R)3g−g+n, the tensor product of 3g − 3 + n upper-half

planes. Alternately, we can think of each pair (lk, τk) as defining set of polar

coordinates on an infinite-sheeted cover of the punctured 2d plane, with radial

coordinate r = lk and an unwrapped polar angle φ = 2πτk/lk that takes values

in R. This gives us a natural way of thinking about the Dehn twists: they

are rotations by 2π that take us from a given point to the same point on a

different sheet of the cover. Tg,n is then the tensor product of 3g − 3 + n such

surfaces.

We will also find it necessary to consider the compactification of Teichmüller

space that arises by allowing one or several geodesics on Σg,n to collapse to

zero size, producing two identified cusps on the surface. The space that results
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from adding these points to Teichmüller space is called the Delign-Mumford

compactification, denoted T g,n. This compactification has the mathematically

advantageous property of turning Teichmüller space into an algebraic space.

To determine what points are actually added, there are two situations we

must consider for any given pants decomposition. One is the case where the

collapsed geodesic is one of the cut geodesics in the decomposition. In this case,

the point that must be added to Teichmüller space is just the point lk = 0.

Note that this is in fact a single point, since the definition of τ breaks down for

vanishing geodesics. This is intuitive in the picture where (lk, τk) parametrizes

an infinite cover of the punctured plane, since adding the vanishing-geodesic

surface to Teichmüller space simply means filling in the puncture. On the

other hand, if the vanishing geodesic is not one of those cut by the pants

decomposition, it corresponds to adding a point in a limiting case where at

least two of lk values (and possibly more) simultaneously go to infinity. What

adding all these points at infinity does to the overall topology of the space is

much less intuitively clear. The overall set T g,n−Tg,n of added points is called

the compactification locus.

5.2 The Weil-Petersson Form

In a given set of Fenchel-Nielsen coordinates, the Weil-Petersson form, which

we said earlier was a multiple of the symplectic form of our Chern-Simons

theory, is given by

ωWP = dlk ∧ dτk. (5.1)

While this definition would at first glance seem to depend on our choice of

pants decomposition for Σg,n, Wolpert [29] has shown that in fact ωWP takes
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this form for any choice of Fenchel-Nielsen coordinates.

The Weil-Petersson form is clearly compatible with the complex structure

defined by J(∂/∂lk) = ∂/∂τk, J(∂/∂τk) = −∂/∂lk, and is in fact a Kähler

form on Tg,n. Expressed in these coordinates, ωWP is clearly invariant under

the flows generated by ∂/∂lk and ∂/∂τk. In particular, it is invariant under

the Dehn twist operation τk → τk + lk.

As a symplectic form, ωWP can be used to define a volume form on Tg,n

given by

ω3g−3+n

(3g − 3 + n)!
= dl1 ∧ dτ1 ∧ dl2 ∧ dτ2 ∧ . . . ∧ dl3g−3+n ∧ dτ3g−3+n. (5.2)

Here and in the future we drop the ‘WP ’ subscript whenever there is no con-

fusion about what symplectic form we are denoting.

Wolpert [29] has shown that the Weil-Petersson form extends to a symplec-

tic form on the Delign-Mumfold compactification T g,n. Let us now consider

its behaviour when confined to a certain subspace of the compactification lo-

cus T g,n − Tg,n. Consider two surfaces Σg1,n1
and Σg2,n2

which satisfy the

conditions g1 + g2 = g − m + 1 and n1 + n2 = n + 2m for some integer

m ≤ n1, n2. We can join m cusps on Σg1,n1
to cusps on Σg2,n2

(Fig. 5.4)

to obtain Σg,n: a genus-g surface with n marked points and m double cusps

(vanishing-length geodesics). We now choose a pants decomposition for each

component surface. Denote the set of cut geodesics on the first surface by

Γ1 = {γi : i = 1, . . . , 3g1 − 3 + n1}, the set of cut geodesics on the second

surface by Γ2 = {γj : j = 1, . . . , 3g2 − 3 + n2}, and the set of zero-length

geodesics around the double cusps on Σg,n by Γ0 = {γk : k = 1, . . . ,m}. Then

Γ0 ∪ Γ1 ∪ Γ2 is a set of 3g − 3 + n geodesics that defines a perfectly good

pants decomposition of Σg,n. We use this pants decomposition to define a set

of coordinates on T g,n. In these coordinates, the Weil-Petersson form is given
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Figure 5.4: Two surfaces Σg1,n1
and Σg2,n2

join along cusps to form a single
surface Σg,n.

by

ω = dli ∧ dτi + dlj ∧ dτj + dlk ∧ dτk, (5.3)

where li, τi are the lengths and twists on the γi’s, etc. Of course, for the surface

we are considering all of our lk values are fixed to 0. On the subspace whose

points correspond to such surfaces (which is clearly isomorphic to T g1,n1
×

T g2,n2
), the Weil-Petersson form reduces to

ω = dli ∧ dτi + dlj ∧ dτj = ω1 + ω2 (5.4)

where ω1 and ω2 are the Weil-Petersson forms on T g1,n1
and T g2,n2

, respectively.

So we have shown that ω reduces to the sum of the Weil-Petersson forms on

the two component surfaces of Σg,n. This is called the restriction phenomenon

[6]. It is easy to extend the above analysis to show that this same phenomenon

occurs whenever Σg,n is divisible along double cusps into an arbitrary number

of lower-genus Riemann surfaces: the Weil-Petersson form reduces to a sum of

Weil-Petersson forms on those surfaces.
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5.3 Moduli space

To construct the moduli spaceMg,n, we quotient Tg,n by the action of the map-

ping class group Γg,n. As previously stated, Γg,n is the group of all diffeomor-

phisms on Σg,n, modded out by those that are connected to the identity. Since

the surfaces represented by points in Teichmüller space are already unique up

to infinitesimal diffeomorphisms, this quotient ensures that the points in Mg,n

are in one-to-one correspondence with truly unique hyperbolic metrics on Σg,n.

Dehn [30] showed that the mapping class group is completely generated by

performing Dehn twists along geodesics on Σg,n. For a Dehn twist performed

along one of the cut geodesics in our pants decomposition, our picture of the

(l, τ) surface as an infinite cover of the plane gives us an easy way of visualizing

the quotient of Teichmüller space by this element of Γg,n. The quotient simply

identifies corresponding points on each leaf of the cover, reducing it down to

a single punctured plane. So moduli space is the tensor product of 3g − 3 + n

punctured planes quotiented by the subgroup of Γg,n corresponding to twists

around geodesics not in the pants decomposition. This quotient is unfortu-

nately much harder to visualize. We do know, however, that the action of this

group is properly discontinuous but not free, and therefore Mg,n is an orbifold.

If we quotient T g,n instead of Tg,n, we obtainMg,n: the Deligne-Mumford com-

pactification of moduli space. This is the space of unique hyperbolic metrics

on Σg,n that are allowed to have vanishing closed geodesics.

The Weil-Petersson form, being invariant under Dehn twists, is invariant

under the action of the entire mapping class group. Therefore it descends to a

Kähler form on Mg,n and Mg,n, giving them a Kähler orbifold structure. The

volume form (5.2) also descends to a volume form on these spaces. We define

60



the Weil-Petersson volume of moduli space by

Vg,n =

∫

Mg,n

ω3g−3+n

(3g − 3 + n)!
(5.5)

Because the compactification locusD = Mg,n−Mg,n is a union of submanifolds

of positive codimension [6], we can equivalently perform the integral over Mg,n

and the result will not change.

Mirzakhani [31], building on the intersection theory on moduli space devel-

oped by Witten [32] and Kontsevich [33], has found a recursion algorithm that

allows one in principle to compute these volumes to arbitrarily high genus. In

practice this algorithm becomes unwieldly very quickly as genus increases. Zo-

graf [34], using an alternate algorithm, has gathered enough data to conjecture

that at large g the Weil-Petersson volumes have the asymptotic behaviour

Vg,n =
1√
gπ

(4π2)2g−3+n(2g − 3 + n)!
[

1 + cng
−1 +O(g−2)

]

as g → ∞. (5.6)

This conjecture has not been proven, but is supported by empirical data [34]

and analytical evidence by Mirzakhani [35].

On the other hand, for small genus many exact results are known. The

ones we will need here are V1,1 = π
6
and V0,4 = π

3
, originally calculated by

Wolpert [36][6]. These will be important enough to our result that we should

understand how they are derived.

5.4 Volumes of two-dimensional moduli spaces

Let us now examine those moduli spaces which are two-dimensional. These

will be important to us due to the property that their Weil-Petersson forms

are volume forms, so their volumes are simply
∫

M
ω. Since d = 6g−6+2n, we
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see that there are only two moduli spaces for which d = 2: M1,1, the moduli

space of the once-punctured torus Σ1,1; and M4,0, the moduli space of the

four-punctured sphere Σ0,4. Both Σ1,1 and Σ0,4 can be pants-decomposed by

cutting along a single geodesic, so their Teichmüller spaces are identical. In

addition their mapping class groups are the same, each being generated by

Dehn twists around the two geodesics that make up their abelian fundamental

groups. Given this, it is not surprising that in fact M1,1 ≈ M0,4 [6]. The

map between the two proceeds by noting that every once-punctured torus has

a four-punctured torus as a fourfold cover, and every four-punctured torus

is a twofold cover of a four-punctured sphere. This defines a map from any

given point on M1,1 to a point on M0,4 and vice verse, and the multiplicity

of the covers gives us the relation ω0,4 = 2ω1,1[6]. So we are guaranteed that

V0,4 = 2V1,1, and are left with only one Weil-Petersson volume to find.

Although Wolpert [36] was the first to calculate this volume, we will derive

it using a simpler method due to Mirzakhani [37]. We first define the following

cover of M1,1:

M∗
1,1 = {(X, γ) : X ∈ M1,1, γ is a simple closed geodesic on X.} (5.7)

The projection π : M∗
1,1 → M1,1 is defined by forgetting about the geodesic:

π(X, γ) = X. Denote by π∗ω the pullback of the Weil-Petersson form onto

M∗
1,1. Now, consider a function f : M∗

1,1 → R. We can define the pushforward

π∗f : M1,1 → R by [37]

π∗f(X) =
∑

Y ∈π−1(X)

f(Y ). (5.8)
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We then have a relation between the integrals of these two functions:

∫

M1,1

(π∗f)ω =

∫

M∗

1,1

(π∗ω)f (5.9)

Our strategy will be to find a function f for which π∗f = 1. This equation

will then give us an integral over the covering space that is equal to the Weil-

Petersson volume of M1,1.

We now wish to show that [37]

M∗
1,1

∼= {(l, τ) : l ∈ R+, 0 ≤ τ ≤ l}/ ∼ (5.10)

where (l, 0) ∼ (l, l) for all l ∈ R+. This is the space obtained by quotient-

ing T1,1 by a single Dehn twist, and we will denote it T1,1/ ∼. We show the

congruence of these spaces by finding a bijective map between them. The in-

jection from M∗
1,1 to T1,1/ ∼ is straightforward: (X, γ) simply maps to the

point (l, τ) = (l(γ), τ(γ)), where l(γ) and τ(γ) are the length and twist pa-

rameters of the geodesic γ. The domain restriction 0 ≤ τ ≤ l ensures that

this map is injective. In the reverse direction, any pair (l0, τ0) defines a point

on T1,1, and the projection from T1,1 to M1,1 maps this to a unique point X

on M1,1. If X is not an orbifold point we are guaranteed to have a unique

geodesic γ on X for which (l(γ), τ(γ)) = (l0, τ0), so this pair also determines

a unique geodesic γ(l0, τ0). If X is an orbifold point, we may have multiple

geodesics with the same length and twist parameters. In this case we sim-

ply have to choose some systemic way of picking one of them, such as taking

γ(l0, τ0) ≡ limε→0+ γ(l0 − ε, τ0 − ε). This completes the second injective map.

Defined like this our two injective maps are inverses of each other, and so define

a bijective map between our two spaces which are therefore equivalent.

SinceM∗
1,1 is a quotient of T1,1 and our (l, τ) coordinates are simply Fenchel-
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Nielsen coordinates, the pullback of the Weil-Petersson form onto M∗
1,1 takes

the usual form dl ∧ dτ . The final piece of the puzzle is an identity proven by

McShane [38], which states that on a hyperbolic torus X with a single cusp,

∑

γ

2

1 + exp(l(γ))
= 1 (5.11)

where the sum runs over all simple closed geodesics on X. With this we see

that if we take f(l) = 2
1+exp(l)

, we have π∗f = 1 and equation (5.9) becomes

[37]

∫

M1,1

ω =

∫

M∗

1,1

f(l)dl ∧ dτ =

∫ ∞

0

∫ l

0

2

1 + exp(l)
dτdl =

π2

6
(5.12)

So as previously stated, V1,1 =
π2

6
and V0,4 = 2V1,1 =

π2

3
.

5.5 Cohomology of the Weil-Petersson form

We are now in a position to calculate the cohomology of ω on our actual

moduli space Mg of gravity solutions. To do this, we first need to understand

the second homology group on this space; i.e. what closed two-cycles exist

over which we can integrate ω. We will refer to the manifold homology group

if we are considering only cycles which are embeddings of two-dimensional

manifolds into Mg, and denote this group H∗
2 (Mg,Q) (where Q denotes that,

as an orbifold, Mg has rational homology.) The orbifold homology group,

where we are allowing cycles which are embeddings of orbifolds, will be denoted

H2(Mg,Q). It is this second homology group that will give us the quantization

condition on the Chern-Simons coupling k′.

Every orbifold cycle must corresponding a manifold cycle obtained by pro-

jecting the orbifold’s covering space down to the orbifold itself and then onto
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Figure 5.5: A once-punctured torus (shaded) and once-punctured genus g − 1
surface are joined into a single punctureless surface. Allowing the torus to vary
over its moduli space sweeps out an orbifold two-cycle in Mg.

the cycle, sweeping it out multiple times. So the generators of these two ho-

mology groups should be in one-to-one correspondence. Harer [39] has shown

that H∗
2 (Mg,Q) is generated by a single element. By our previous consid-

erations, this means that our orbifold homology group H2(Mg,Q) must also

be one-dimensional. It is not clear how to define an actual two-cycles on Mg

that might generate its second homology group. On the other hand, Wolpert

[6] has shown that for g ≥ 3 the dimension of the manifold homology group

H∗
2 (Mg,Q) is 2 + bg/2c, and has also found an explicit construction of its

cycles. We will repeat his analysis here, slightly modified to directly produce

the generators of the orbifold homology group.

The 2 + bg/2c homology classes in H2(Mg;Q) can be constructed [6] as

maps from covers of M1,1 and M0,4 onto Mg. To embed M1,1, we start with

a genus g−1 surface Σg−1,1 with a single puncture. We attach the cusp on this

surface to the cusp on a once-punctured torus (Figure 5.5), creating a surface

Σg corresponding to some point on the compactification locus D = Mg −Mg.

We then allow the punctured torus to vary over its entire moduli space while

keeping the moduli on Σg−1,1 fixed, naturally sweeping out a two-cycle which

is the image of M1,1. Over this two-cycle the restriction phenomenon reduces

ω to ω1,1, the Weil-Petersson form of the once-punctured torus. So integrating

ω over this cycle simply gives us the Weil-Petersson volume V1,1 =
π2

6
.
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Figure 5.6: A four-punctured sphere (shaded) is connected to a) one four-
punctured genus g− 3 surface, or b) two two-punctured surfaces with genuses
adding to g−2. Varying the sphere over its moduli space sweeps out a two-cycle
for each configuration.

All such cycles can be deformed into one another by varying the moduli of

Σg−1,1 in the above construction, so the above provides us with only a single

homology class. We therefore still have 1 + bg/2c homology classes to find.

These will all be defined as embeddings of a sixfold cover of M0,4 into Mg,

and can be labeled by an integer m, m = 0, . . . , bg/2c. We proceed similarly

to the construction of the first cycle. For m = 0, we start with a genus g − 3

surface with four punctures and attach its cusps to those of a four-punctured

sphere (Figure 5.6a). For m = 1, ..., bg/2c, we instead start with a two two-

punctured surfaces of genusesm−1 and g−m−1 respectively, and attach both

by their cusps to a single four-punctured sphere (Figure 5.6b). As with the

torus, the punctured sphere is then allowed to vary over its entire moduli space

while the other moduli are kept fixed. This defines the remaining 1 + bg/2c

nontrivial two-cycles. These cycles are embeddings of the six-fold cover of

M0,4 corresponding to the moduli space of a 4-punctured sphere with labelled

points [6]; in this case the punctures are labelled by their point of attachment

to the other surfaces. They are in fact manifold cycles, each being topologically

a three-punctured sphere (see, e.g. [40]). The restriction phenomenon again

reduces ω to ω0,4 on these cycles, and since they are sixfold covers of M0,4 the

integral over each of them evaluates to 6V0,4 = 2π2.

Since the smallest integral of ω over a two-cycle is π2

6
, we see that the
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smallest multiple of the Weil-Petersson form which is in integer cohomology

on Mg is (6/π2)ω. For any integer multiple of this form there will exist a

line bundle on Mg with a compatible connection whose curvature is this form.

Despite our initial fears, the prefactor on ω does not depend on genus for g > 3,

but is a constant. Therefore these line bundles can be defined on moduli spaces

of arbitrarily high genus with an unchanging choice of prefactor.

What about second homology group, and cohomology of ω, on the un-

compactified moduli space Mg? All of the cycles defined above exist on the

compactification locus D, so none of them alone is a suitable candidate for

the generator of H2(Mg;Q). However, since any cycle in Mg is a cycle in

Mg, there must exist some combination of the elements of H2(Mg;Q) which

can be smoothly deformed off of D to form the generator of this group. Let

us call the resulting two-cycle ξ. The only question that remains is whether

or not ω interacts nontrivially with ξ; i.e. whether it integrates to a nonzero

number. Wolpert [6] has proven that this is indeed the case by showing that

H6g−8(Mg;Q) can be generated by [ω] (the Poincaré dual of ω) and the disjoint

elements of D. Therefore since ξ is both topologically nontrivial and does not

intersect with D, it must intersect with [ω]. Thus, we are guaranteed that the

integral of ω over ξ is π2

6
n for some integer n, and (6/π2)ω is again in integer

cohomology. Here 6/π2 is no longer guaranteed to be the smallest prefactor:

if n is a multiple of 2 or 3 smaller values will be allowed. n may in fact vary

in some nontrivial way with g, allowing smaller prefactors for some genuses

than for others. So given our current knowledge, (6/π2)ω is the still smallest

multiple of ω that we can guarantee to be in integer cohomology, and so have

an associated line bundle, at arbitrarily high genus.
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Chapter 6

Results and Outlook

6.1 The quantization condition

Recall that our quantization condition was that k′

4π2ωWP must be in integer

cohomology for our minisuperspace model to be quantizable. Our initial worry

was that this quantization condition would force k′ to diverge at high genus,

effectively eliminating parity-violating 3d gravity as a self-consistent theory.

We now see, however, that we are assured of quantizability at arbitrarily high

genus if k′ ∈ 24Z.

If we allow our theory of gravity to include classical space-times whose spa-

tial slices have double-cusp singularities, the phase space of our minisuperspace

model becomes Mg and we a guaranteed that only k′ values which are multi-

ples of 24 will lead to quantizable theories. This is a much stronger quantum

condition than any of those considered by Witten in the context of AdS/CFT

[18] or than is necessary for us to be able to Wick-rotate the theory to Eu-

clidean signature, for which k′ only has to be integer. (Although, conversely,

these contexts also provide a quantization condition for k, the prefactor of the

classical Einstein term, about which we have nothing to say.)
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However, there may be good reasons for us not to include double-point

singular spaces in our phase space and work only with Mg, in which case it

is possible that the cohomology of the Weil-Petersson form allows for smaller

values of k′. It would be interesting if simply including the limiting points in

the phase space is enough to alter the quantum condition on the entire theory,

and ideally we would like to understand whether this is the case by explicitly

working out the cohomology of ω on Mg. However, the most likely scenario

seems to be that if this cohomology has any dependence at all on g, k′ ∈ 24Z

will remain the only choice which remains valid for all genus, as required for a

consistent gravity theory.

We have obtained this result on a reduced theory that lives on a half-

dimensional slice of the full phase space, and one might doubt whether this

result has any bearing on the quantization of the full theory. It is easy to

see, however, that the quantization condition for the reduced phase space is

at least a necessary condition for the quantization of the full theory. This is

because ξ, our one nontrivial two-cycle on Mg, is also a nontrivial two-cycle

on T ∗Mg. Furthermore, the integral of the reduced symplectic structure (the

usual multiple of ωWP ) over a cycle confined to Mg is by definition the same as

the integral of the full symplectic structure ω over the same cycle. Therefore

whatever other nontrivial two-cycles may be present in the full phase space,

the integral
∫

ξ
ω imposes the exact same quantization condition on the full

theory as on the reduced theory.

6.2 Semiclassical behaviour of the Hilbert space

We saw in equation (2.20) that the commutator is inversely proportional to

k′. Therefore the large k′ limit is a semiclassical limit where the commutators
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go to zero. Since k′ can be an arbitrary multiple of 24 there is no obstruction

to us taking this limit. If we denote by L a valid prequantum line bundle for

the symplectic manifold for k′ = 24, then Lm provides a valid prequantization

for k′ = 24m, where m here is an arbitrary integer. Applying the standard

prequantization scheme for a Kähler manifold, the quantum Hilbert space H

for arbitrary m is the space of holomorphic sections of Lm. It is easy to check

that ωWP is a positive Kähler form, and therefore we can use the formula

(4.32) for the dimension of the Hilbert space at large m. Plugging in the

relation (4.33) for our symplectic form, we obtain

dimH = dimH0(Mg, L
m) →

(

6m

π2

)3g−3 ∫

Mg

ωWP
3g−3

(3g − 3)!
as m→ ∞. (6.1)

We recognize the integral in this expression as Vg, the Weil-Petersson volume of

Mg. Let us now see how this expression behaves when we also take the limit

where g becomes large. Assuming Zograf’s conjecture (5.6) for the limiting

behaviour of Vg is true, we arrive at the expression

dimHg →
(24m)3g−3(2g − 3)!

(4π2)g
√
gπ

[

1 + cg−1 +O(g−2)
]

as g → ∞. (6.2)

This expression grows very quickly as g increases due to both the factorial

and the exponential function of an already-large base. This is interesting if

we consider the perspective that in a true theory of gravity, the full quantum

Hilbert space of the theory should be the direct sum H0 ⊕ H1 ⊕ H2 ⊕ . . . of

the individual Hilbert spaces at each genus. If the limiting behaviour of our

minisuperspace model can be trusted to reflect the limiting behaviour of the

full theory, the divergence of dimHg at large g in the classical limit implies that

effectively all the states in the classical theory are off at infinite genus, and

therefore the ‘typical’ state of the theory has an infinite-dimensional handle-
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body as its spatial slice. Thus it seems we may have a realization of the old

idea of ‘quantum foam’, where spacetime at the quantum level is made up of

a sea of tiny nontrivial topological connections.

It is possible that the actual divergence of our Hilbert space dimension

is not actually a behaviour of the theory, but rather an artifact of the order

in which we took our limits. The formula (4.32) used to take the first limit

is only valid when all the higher cohomology groups H i(M,Lm) of the line

bundle vanish [22], and while this is always true in the strict m → ∞ limit

it is possible that for any fixed m there is a maximum g value for which this

approximation is valid. Above this cutoff we might hope that the dimension of

Hg eventually falls off again, so that in the end we retain a finite-dimensional

Hilbert space. However, it seems entirely likely that this divergent behaviour

is completely robust; after all, Zograf’s conjecture suggests, and Mirzakhani

has in fact proven [35] that in the large g limit we have Vg

Vg−1
= 64π4g2 +O(g).

It seems rather odd to suggest that in any limit the larger phase space will

contain less quantum states than the smaller one.

Thus we may have a real divergence. This is not unheard of: in ref. [41],

Witten encounters a similar infrared divergence in the partition function over

compact Σ×R universes for Λ = 0 parity-conserving Einstein gravity in (2+1)

dimensions, and argues that this is because the scale invariance of the theory

allows for arbitrarily large space-times. If this is the source of the divergence

in our theory, we might hope that it should disappear if we introduce a length

scale—say, by considering surfaces that have a single boundary of fixed length

A. These are exactly the sort of surfaces that might appear as states behind

the event horizon of the BTZ black hole. The BTZ black hole is a topological

black hole in Λ < 0 3d gravity that can be constructed as a Σ × R universe

where Σ is cylinder, and the event horizon is the single closed geodesic on the
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cylinder [42]. This black hole has the usual horizon entropy, given by the event

horizon length L in Planck units. So we should certainly hope that the Hilbert

space of states behind the event horizon is not only finite-dimensional, but has

dimension ∝ exp(L) in the semiclassical limit. The moduli space of surfaces

with a fixed boundary of length1 L can be constructed in exactly the same way

as those we have already discussed, and their Weil-Petersson volumes, denoted

Vg,1(L), can also be calculated using Mirzakhani’s recursion relation. For low

genus these have been calculated explicitly. The first three are [28]:

V1,1(L) =
1
24
L2 + π2

6
(6.3)

V2,1(L) =
1

442368
L8 + 29π2

138240
L6 + 139π4

23040
L4 + 169π2

2880
L2 + 29π8

192
(6.4)

V3,1(L) =
1

53508833280
L14 + 77π2

9555148800
L12 + 3781π4

2786918400
L10 + 47209π6

418037760
L8

+ 127189π8

26127360
L6 + 8983379π10

87091200
L4 + 8497697π12

9331200
L2 + 9292841π14

4082400
(6.5)

Let us consider L large, compared both to the Planck scale and to l. This

is the case where the infrared divergence should be the worst. In this regime,

it should be the first term in each of these volumes that dominates the sum.

So if the denominators of the first terms grow faster than exponentially, these

volumes should eventually start to decrease for any arbitrarily large (but finite)

value of L. Fortunately these first denominators are the easiest to calculate

with Mirzakhani’s formula. Figure 6.1 is a plot of the (6g − 4)th roots of the

first-term denominators for g = 1 . . . 500, calculated using a Maple implemen-

tation of Mirzakhani’s algorithm written by Liu and Xu. It is clear from the

figure that these denominators are growing faster than exponential. Thus this

1Here we are using units where the AdS scale is l = 1/
√
−Λ = 1. The proper unitless

quantity is L/l.
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Figure 6.1: Plot of the (6g − 4)th roots of the denominators of the first terms
of Vg,1(L) as a function of g. The y value at each genus is the smallest value
that L can take such that the first term in Vg,1(L) remains greater than 1.

first term at least provides no impediment to the hope that the Weil-Petersson

volumes are well-behaved at large genus, and that the overall dimension of

the Hilbert space will be finite. Of course, the reality is that as these terms

vanish at higher genus, the next-order terms will begin to dominate, and even

if all terms containing L eventually vanish at high enough genus we are sure

to be left with the last, L-independent term in each sum. These terms are the

Weil-Petersson volumes for compact surfaces with a single marked point, and

unfortunately diverge at large genus in the exact same way as the Vg’s [35].

We can think of the surface becoming so large and complicated behind the

event horizon that it effectively becomes blind to the existence of a boundary,

and recovers its old scale invariance. Thus the best case scenario seems to be

that at large genus, the divergence for this state-counting is at least as bad as

for our cosmological model. To produce a finite entropy we need some further

mechanism to suppress the high-genus states, the way the high energy of UV

photons suppresses the ultraviolet catastrophe in the study of black body ra-

diation. It is unclear, in the absence of a Hamiltonian, what such a mechanism

might be.
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6.3 Outlook

We have found evidence of a novel quantization condition for the parity-

violating Chern-Simons coupling in 3d gravity. Our result suggests that 3d

gravity with a negative cosmological constant, when treated as a Chern-Simons

theory, can only be quantized when k′ is a multiple of 24. To test this condition

more rigorously we would like to explicitly understand the the single nontrivial

two-cycle that generates H2(Mg,Q) and evaluate the integral of ωWP over it.

Only then will we know for sure what our quantization condition is for the

case where our phase space excludes solutions with double-cusp singularities.

More ambitiously, we would like to leave our minisuperspace model behind

and tackle the quantization of the entire phase space T ∗Mg. In particular

we would like to know whether there are nontrivial two-cycles other than ξ

in H2(T ∗Mg,Q), and whether the cohomology of ω over these cycles changes

the quantization condition for k′ or provides one for k. In our reduced model

we would also like to push the program of quantization by finding an actual

prequantum line bundle for (Mg, ω). In [43] Wolpert obtains a line bundle on

Mg with curvature ωWP . In future work we would like to understand this line

bundle and its properties; in particular, we would like to explicitly compute

the cohomologies that would allow us to determine the dimensionality of the

phase space in the quantum regime. Finally, and perhaps most interestingly,

we would like to look at extending this work to quantize the moduli spaces

of surfaces with boundary, in hopes of making more explicit contact with the

entropy of the BTZ black hole.
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